

Archives of Physical Medicine and Rehabilitation

journal homepage: www.archives-pmr.org

Archives of Physical Medicine and Rehabilitation 2021;000: 1–19

REVIEW ARTICLE (META-ANALYSIS)

Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review

Jie Hao,^a Haoyu Xie,^a Kimberly Harp, MLS,^b Zhen Chen, MD, PhD,^c Ka-Chun Siu, PhD^a

From the ^aDivision of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE; ^bLeon S. McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE; and ^cDepartment of Neurorehabilitation, The First Rehabilitation Hospital of Shanghai, Shanghai, China.

Abstract

Objective: To systematically review and examine the current literature regarding the effects of virtual reality (VR)-based rehabilitation on neural plasticity changes in survivors of stroke.

Data Sources: We searched 6 bioscience and engineering databases, including Medline via EBSCO, Embase, PsycINFO, IEEE Explore, Cumulative Index of Nursing and Allied Health, and Scopus.

Study Selection: We selected studies reporting on the pre-post assessment of a VR intervention with neural plasticity measures published between 2000 and 2021.

Data Extraction: Two independent reviewers conducted study selection, data extraction, and quality assessment. They assessed methodological quality of controlled trials using the Physiotherapy Evidence Database scale and evaluated risk of bias of pre-post intervention and case studies using the National Institutes of Health Quality Assessment Tool.

Data Synthesis: We included 27 studies (n=232). We rated 7 randomized-controlled trials as good quality and 2 clinical-controlled trials as moderate. Based on the risk of bias assessment, we graded 1 pre-post study and 1 case study as good quality, 1 pre-post study and 1 case study as poor, and the other 14 studies as fair. After the VR intervention, main neurophysiological findings across studies include: (1) improved interhemispheric balance; (2) enhanced cortical connectivity; (3) increased cortical mapping of the affected limb muscles; (4) the improved neural plasticity measures were correlated to the enhanced behavior outcomes; (5) increased activation of regions in frontal cortex; and (6) the mirror neuron system may be involved.

Conclusions: VR-induced changes in neural plasticity for survivors of stroke. Positive correlations between the neural plasticity changes and functional recovery elucidates the mechanisms of VR-based therapeutic effects in stroke rehabilitation. This review prompts systematic understanding of the neurophysiological mechanisms of VR-based stroke rehabilitation and summarizes the emerging evidence for ongoing innovation of VR systems and application in stroke rehabilitation.

Archives of Physical Medicine and Rehabilitation 2021;000:1-19

© 2021 The American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

Stroke is one of the leading causes of disability in the world, and the long-lasting residual impairments and dysfunctions influence the daily activity and quality of life of a substantial number of survivors of stroke.¹ Physical and occupational therapy, physiatry, speech language pathology, neuropsychology, and nursing have been involved in an interdisciplinary approach for poststroke rehabilitation in a variety of settings to facilitate functional recovery and help patients return to work and life. Rehabilitation interventions also evolve with advancements in theory and evidence from bench to bedside.

Using novel technology in neurorehabilitation has brought promise to advance stroke rehabilitation. As a computer-generated simulation technology, virtual reality (VR) could create an enriched environment, facilitate task-specific training, and provide multimodal feedback to augment functional recovery.² The 3 key concepts of VR are immersion, imagination, and interaction.³ Patients can immerse in and interact with the virtual environment by engaging imagery. VR technology can create games and novel

Disclosures: none.

^{0003-9993/\$36 -} see front matter © 2021 The American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.apmr.2021.06.024

tasks not available in the real world, thereby increasing the engagement of patients and eliciting their active participation.⁴ In parallel with usual rehabilitation therapy programs, VR can motivate patients to perform more meaningful practices⁵ as well as enhance the intensity of purposeful movements.⁶ Clinicians have increasingly adopted VR-based rehabilitation, and the emerging research has gradually demonstrated its effects. As a surrogate intervention, VR-based rehabilitation has shown promising results in upper limb function,⁷ gait,⁸ balance,⁹ cognition,¹⁰ and quality of life¹¹ in survivors of stroke. Recent evidence also presented the benefits of applying VR in the hospital setting for survivors of stroke, including improving functional outcomes and mood states,¹² as well as lowering medical expenditures.¹³ Furthermore, the rapidly developing commercially available VR systems, which are relatively inexpensive, portable, and easy-to-use, can be used as home-based programs for patients after discharge to continue rehabilitation.

Functional recovery after brain damage is heavily driven by neural plasticity, which is the adaptive capacity of the central nervous system to undergo structural and functional change in response to experience.¹⁴ Neural plasticity reflects the dynamic change capability of our nervous system across the lifespan. At synaptic level, it presents the changes in the strength of synaptic connections in response to a stimulus or an alteration in synaptic activity in a network.¹⁵ It also involves the axonal remodeling of the cortical pathways and the rearrangements of cortical mapping occurring with disease or recovery.¹⁶ Current understanding of neural plasticity carries implications in rehabilitation, and those implications have been used in practice. To promote experiencedependent neural plasticity and functional recovery, intensive, repetitive, and salient task-specific practices should be used.¹⁷ In addition to taking advantage of the above principles in a simulated media, VR as well as augmented feedback could also enrich training environments by engaging sensory-, cognitive- and perceptive-motor pathways. Therefore, compared with conventional rehabilitation interventions, VR is in a better position to provide the above critical components of neural plasticity to bolster functional recovery outcomes.

Although many reviews in VR and stroke conclude a positive outcome in stroke rehabilitation, most reviews and current studies^{2,18,19} focus on the influence of VR-based rehabilitation on impairment and functional measures, but only a few studies^{20,21} pay attention to the change occurring in the central nervous system. The underlying neuro-mechanism that drives such clinical impacts in stroke using VR still needs further investigation. The measure and appreciation of neural plasticity could harness the

List o	f abbreviations:
CCT	controlled clinical trial
EEG	electroencephalography
fMRI	functional magnetic resonance imaging
M1	primary motor cortex
NIH	National Institutes of Health
PFC	prefrontal cortex
PMC	premotor cortex
RCT	randomized controlled trial
S1	primary somatosensory cortex
SM1	primary sensorimotor cortex
SMA	supplementary motor area
TMS	transcranial magnetic stimulation
VR	virtual reality

application of VR in rehabilitation. Understanding the effects of VR-based rehabilitation on neural plasticity is critical to elucidate the mechanisms underlying this novel approach and help to identify the neural substrates of recovery to develop effective strategies in VR design and development. Therefore, this systematic review examined the current literature regarding the effects of VR-based rehabilitation on neural plasticity changes with functional recovery in survivors of stroke.

Methods

We conducted this systematic review by following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline to guarantee high-quality reporting.²² We registered this review with the International prospective register of systematic reviews (PROSPERO): CRD42020196405.

Literature search

We searched 6 bioscience and engineering databases, including Medline via EBSCO, Embase, PsycINFO, IEEE Explore, Cumulative Index of Nursing and Allied Health, and Scopus for articles. We limited the results to articles published between 2000 and 2021 and in English because the application of VR in rehabilitation began to emerge after 2000. The search strategy, designed by an experienced academic medical librarian (K.H.), combined controlled vocabulary terms and free-text words in the title or abstract on the concepts of virtual reality, stroke, and neural plasticity in applying the inclusion criteria. We finished the final search by May 6, 2021. To minimize bias, we applied a broad search strategy that focused on all patients with a history of stroke. We have included the complete search strategies in the supplemental material (available online only at http://www.archives-pmr.org/).

Eligibility criteria

Articles selected for inclusion in this review meet the following criteria: (1) participants were adult patients aged 18 years and older with the diagnosis of stroke; (2) VR-based rehabilitation was used for intervention; (3) outcomes included neural plasticity, as measured by objective neuroimaging and electrophysiological techniques; (4) the study type was a clinical trial; and (5) the articles were peer-reviewed or conference proceedings. Articles would be excluded if (1) participants had other neurologic diseases; (2) noninvasive brain stimulation or brain-computer interface paradigms were used in combination with VR; and (3) outcomes were only measured at 1 timepoint.

Data extraction

Two reviewers (J.H., H.X.) independently screened the titles and abstracts, then checked the full texts as needed to examine if the articles met the eligible criteria; they excluded irrelevant articles. The details collected from each article included participant characteristics, study type, interventions, control groups, VR type and setting, neural plasticity measurement tools, and outcome results. Any disagreement during this process was settled by group discussion, and the final decision will be made with the third experienced reviewer (K.C.S.). Interrater reliability was assessed using percentage agreement and Cohen κ coefficient after screening.

Virtual reality in stroke rehabilitation

Interrater agreement of eligibility by abstract was very good (κ =84.1%; 95% confidence interval, 0.65-1.03).

Quality assessment

We used the Physiotherapy Evidence Database scale to evaluate the methodological quality of all the included randomized controlled trial (RCT) and controlled clinical trial (CCT). This scale was developed to identify trials that are likely to be internally valid and have sufficient statistical information to guide clinical decision making.²³ There are 11 items in this scale, with the last 10 items counting 1 point each, and the total score range is 0-10. Higher scores indicate better study quality. The common interpretation of the total score of an article was 6-10 as good quality, 4-5 as moderate quality, and 0-3 as low quality.²⁴ The reviewers evaluated the risk of bias assessment for other study designs by the National Institutes of Health (NIH) Quality Assessment Tool. They evaluated single-arm trials using the NIH Quality Assessment Tool for before- and after-studies with no control group,²⁵ and evaluated case studies by the NIH Quality Assessment Tool for case series studies ²⁶ The reviewers independently scored the included studies and identified discrepancies and solved them with a third experienced reviewer. The quality assessment tool provides a rating for low, fair, or high risk of bias. Interrater agreement of risk of bias assessment was fair (κ = 27.4%; 95% confidence interval, -0.11 to 0.66).

Data synthesis

We conducted a narrative synthesis of the data from the identified studies, including participants characteristics, study type, interventions, control group, VR intervention, neural plasticity measures, and functional outcome results.

Results

Studies identification

We identified 232 records from 6 databases and another 4 records through our reference list. After removing duplicates, 142 records remained and were screened. We assessed 29 full-text articles for eligibility and included 27 studies in this systematic review. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis flowchart in figure 1 demonstrates the process of study identification and the reasons for excluding the 3 studies. Among the included studies, 6 were RCTs, 2 were CCTs, 11 were pre-post single-arm trials, and 7 were case series/studies. Table 1 summarizes the characteristics of these studies.

VR systems for intervention

Twenty-four studies focused on sensorimotor rehabilitation, and there was a fair amount of variation regarding VR systems. Among them, 3 studies focused on lower extremity function,²⁷⁻²⁹ 1 on balance training,³⁰ and the remaining 20 on upper extremity function.^{21,31-49} Two studies^{27,28} use VR-enhanced treadmills for locomotion training, and 1 used IREX lower extremity games.²⁹ Nintendo Wii Fit games were used for balance training.³⁰ Seven of the 19 studies used the NJIT-RAVR system for upper extremity, which combined VR with robotic training.^{35,36,38,41,43,47,49} Other

3

games,^{21,33} Kinect-based VR,³¹ robotic VR system,^{37,40} Rehabilitation Gaming System,³⁴ VR-based bilateral upper-extremity training,³² immersive VR mirror therapy,⁴⁵ customized immersive VR,⁴⁴ EMG-based VR neurofeedback system,⁴⁶ and an early prototype of VR rehabilitation system.³⁹

For cognition rehabilitation, 2 single-arm studies used VR in chronic survivors of stroke with unilateral visuospatial neglect.^{50,51} The same 3-dimensional VR apparatus was used in both studies for visual scanning training. Another single case study used the BTS NIRVANA system for the treatment of neglect.⁵²

To facilitate the depiction of different VR systems' features and special advantages, we extracted the therapeutic advantages from each study by adopting and modifying the approach by Maier et al.⁵³ Those therapeutic advantages reflected the neurorehabilitation principles that have shown effectiveness in motor recovery by driving neural plasticity. Table 2 summarizes these principles. For design, we assigned the VR intervention of each study to 1 of 3 categories based on the immersion level: nonimmersive, semiimmersive, and fully immersive.⁵⁴ Definitions and examples of these 3 categories are also summarized in Table 2.

Quality assessment

With Physiotherapy Evidence Database scoring, all 6 included RCTs scored above 6, which was considered as good quality; the 2 CCTs both scored 5, which was considered as moderate quality. As shown in table 3, all 8 studies scored points on item 4 (groups were similar at baseline) and items 8-11. However, they rarely scored points on item 5 (blinding of participants) and item 6 (blinding of therapists), which is understandable owing to the nature of intervention studies. Table 4 summarizes the NIH quality assessment results of pre-post and case studies. Most studies were evaluated as fair quality; 2 studies had good quality and 2 had poor quality.

Neural plasticity measurements

To conclusively measure neural plasticity, we used 4 noninvasive neuroimaging and electrophysiological techniques, including functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and transcranial magnetic stimulation (TMS). Table 5 has a detailed summary for each study and a simplified checklist.

Functional magnetic resonance imaging

A series of studies reported increased activation of ipsilesional primary sensorimotor cortex (SM1) after VR intervention . Interhemispheric dominance was calculated by the lateral index; although the formula and interpretation were varied across studies, most of them consistently showed the shift of activation from the contralesional to the ipsilateral hemisphere. ^{27,29,31,36,38,41,42,48} You et al²⁹ found the lateral index value after VR intervention was comparable to healthy participants. However,1 study showed the opposite phenomenon, which was the contralesional activation of the primary motor cortex (M1).²¹ For the supplementary motor area (SMA), another study found increased bilateral activation,²⁷ whereas yet another showed decreased widespread bilateral activation along with the contralesional premotor cortex (PMC)³³; studies also noted increased ipsilesional activation³⁹ and decreased contralesional activation. ³⁵ For the cerebellum, 1 study

Fig 1 The Preferred Reporting Items for Systematic Reviews and Meta-Analysis flowchart.

showed increased recruitment²¹; 2 cases studies showed an increase³¹ and a decrease⁴⁰ of cerebellum activation, respectively. Prominent prefrontal cortex (PFC) activation was noted after VR intervention.²¹

Connectivity was a measure of correlation among different brain function regions. Compared with brain activation as a functional segregation concept, connectivity was more focused on the functional integration.⁵⁵ Increased functional connectivity was shown between bilateral SM1,³⁸ contralesional M1,^{35,45} and ipsilesional M1; and between bilateral primary somatosensory cortex (S1), ipsilesional superior parietal gyrus, cerebellum and ipsilesional M1.⁴⁵ Task-related connectivity also showed an increase between ipsilesional M1 and SMA.³⁵ In another study,³⁶ functional connectivity between the ipsilesional M1 and other regions of the brain did not have significant differences between the VR group and control groups; instead, the change of effective connectivity was found in the VR group, which was the facilitation of ipsilesional M1 by S1. Functional connectivity within the dorsal attention network was also found to increase after VR training for spatial neglect.⁵¹ VR intervention increased the task-evoked brain activity in an extended network during attentional cuing, which included the PFC and temporal cortex.⁵⁰

Electroencephalography

Two RCTs found the VR group to elicit higher cortical activation within the frontoparietal region. One study³² found that, compared with conventional bilateral upper extremity training, the VR-based bilateral upper extremity training induced higher concentration of brain activity in both hemispheres. The other study²⁸ also found more evident activation of the premotor, precuneus, and associative visual areas in the VR-based Lokomat training, in which areas that the mirror neuron system might be encompassed. Event-

Table 1 Study	characteristics								
Study	Study Design	Imaging	Sample Size	Lesion	Stage	Intervention	Dosage	VR Type	Behavior Outcomes
Jang et al ³³	Randomized controlled trial	fMRI	10 (VR 5, control 5)	Subcortical	Chronic >6 months	IREX VR games for UE Passive control: no intervention	60 min \times 5 d \times 4 w	Nonimmersive	FMA, BBT, MFT
You et al ²⁹	Randomized controlled trial	fMRI	10 (VR 5, control 5)	Cortical and subcortical	Chronic >1 year	IREX VR games for LE Passive control: no intervention	60 min \times 5 d \times 4 w	Nonimmersive	FAC, MMAS
Lee et al ³²	Randomized controlled trial	EEG	18 (VR 10, control 8)	Not mentioned	Chronic >6 months	VR UE training Active control: UE training	30 min \times 3 d \times 6 w	Nonimmersive	None
Ballester et al ³⁴	Randomized controlled trial	TMS	35 (VR 17, control 18)	Not mentioned	Chronic >1 year	Rehab Gaming System for UE Active control: conventional therapy	20 min \times 1-3 sessions \times 5 d \times 3 w	Semi-immersive	FMA, CAHAI
Calabrò et al ²⁸	Randomized controlled trial	EEG	24 (VR 12, control 12)	Cortical	Chronic >6 months	Lokomat treadmill with VR Active control: Lokomat	$40~min~\times~5~d~\times~8~w$	Semi-immersive	RMI, POMA
Wang et al ⁴²	Randomized controlled trial	fMRI	26 (VR 13, control 13)	MCA stroke	Subacute 8 weeks	Leap motion VR + PT Active control: OT + PT	$45~min~\times~5~d~\times~4~w$	Nonimmersive	WMFT
Mekbib et al ⁴⁴	Randomized controlled trial	rs-fMRI	23 (VR 12, control 11)	Not mentioned	Subacute 3 months	MNVR-Rehab for UE + OT Active control: time- matched OT	$1 \text{ h} \times 4 \text{ d} \times 2 \text{ w}$	Immersive	FMA, BI
Saleh et al ³⁶	Controlled clinical trial	fMRI	19 (VR 10, control 9)	Cortical and subcortical	Chronic >1 year	Robot-assisted VR (NJIT- RAVR) for UE Active control: repetitive task practice	$3 h \times 4 d \times 3 w$	Semi-immersive	JTHFT
Patel et al ⁴³	Controlled clinical trial	TMS	13 (VR 7, control 6)	Cortical and subcortical	Acute and early subacute 1 months	Robot-assisted VR (NJIT- RAVR) for UE + conventional therapy Passive control: conventional therapy	1 h \times 8 sessions	Semi-immersive	FMA, WMFT
Bao et al ³¹	Pre-post single group	fMRI	5	Cortical and subcortical	Subacute 3 months	Kinect-based VR for UE	$60~min~\times~5~d~\times~3~w$	Non immersive	FMA, WMFT
Ekman et al ⁵⁰	Pre-post single group	fMRI	12	Cortical and subcortical	Chronic >1 year	RehAtt VR 3D game for neglect training	60 min $ imes$ 3 d $ imes$ 5 w	Semi-immersive	Posner cuing task in fMRI
Orihuela-Espina et al ²¹	Pre-post single group	fMRI	8	Subcortical	Chronic >6 months	IREX VR gaming system gesture therapy	45 min \times 20 sessions	Semi-immersive	FMA, Motricity index
Mekbib et al ⁴⁵	Pre-post single group	rs-fMRI	12	Cortical and subcortical	Subacute 3 months	Immersive VR mirror therapy + conventional therapy	60 min \times 4 d \times 2 w	Full-immersive	FMA
Omiyale et al ³⁰	Pre-post single group	TMS	10	Not mentioned	Chronic	Nintendo Wii Fit balance	60 min \times 3 d \times 3 w	Nonimmersive	Balance: reaction time, TUG
Marin-Pardo et al ⁴⁶	Pre-post single group	EEG	4	Not mentioned	>1 year Chronic >1 year	EMG based VR feedback for wrist extension activation	1 h \times 7 sessions	Full-immersive	FMA, ARAT, Wrist ROM, SIS-16
Patel et al ⁴⁷	Pre-post single group	TMS	5	Cortical and subcortical	Acute and subacute 47 days	Robot-assisted VR (NJIT- RAVR) for UE + conventional therapy	60 min \times 5 d \times 2 w	Semi-immersive	FMA, WMFT
Turolla et al ⁴⁸	Pre-post single group	fMRI	15 (Only 1 received fMRI)	MCA ischemic stroke	Chronic >6 months	Haptic robotics VR	45 min \times 5 d \times 3 w	Semi-immersive	FMA, NHPT, Kinematics data
Wåhlin et al ⁵¹	Pre-post single group	rs-fMRI	13	Not mentioned	Chronic >6 months	RehAtt VR 3D game for neglect training	60 min \times 3 d \times 5 w	Semi-immersive	None
Xiao et al ²⁷	Pre-post single group	fMRI	8	Cortical and subcortical	Subacute 42 days	VR enhanced treadmill	5 sessions \times 3 w	Nonimmersive	FMA, Brunel, 10 m walk time, Gait speed
Yarossi et al ⁴⁹	Pre-post single group	TMS	17	Cortical and subcortical	Subacute 3 months	Robot-assisted VR (NJIT- RAVR) for UE + conventional therapy	8 sessions	Semi-immersive	FMA, WMFT, BBT, Kinematic and kinetic measures
Schuster-Amft et al ³⁹	Case series	fMRI	2	Subcortical	Chronic >1 year	VR rehab system for UE	45-60 min/d $ imes$ 4 w	Semi-immersive	CAHAI, VR performance
Comani et al ³⁷	Case series	EEG	3	Cortical and subcortical	Subacute 3 weeks	Robotics VR system	3 sessions \times 4 w	Semi-immersive	Kinematics measures

Virtual reality in stroke rehabilitation

(continued on next page)

σ

Table 1 (Conti	nued)								
Study	Study Design	Imaging	Sample Size	Lesion	Stage	Intervention	Dosage	VR Type	Behavior Outcomes
Saleh et al ³⁸	Case series	fMRI	4	Cortical and subcortical	Chronic >1 vear	Robot-assisted VR (NJIT- RAVR) for HF	3 h × 8 d	Semi-immersive	WMFT, JHFT, Kinematics measure
Saleh et al ³⁵	Case series	rs- and task- fMR1	1 2	Cortical and subcortical	Chronic >6 months	Robot-assisted VR (NJIT- RAVR) for UE	$3h \times 4d \times 2w$	Semi-immersive	FMA, WMFT
Comani et al ⁴⁰	Single case	EEG	1	Cortical	Subacute	Robotics VR system	3 sessions \times 4 w	Semi-immersive	NHPT, Motricity index, Kinematics measure
De Luca et al ⁵²	Single case	EEG	1	Not mentioned	Not mentioned	BTS NIRVANA VR system for	40 sessions	Semi-immersive	Psychometric battery
Tunik et al ⁴¹	Single case	fMRI		Subcortical	Chronic >1 year	negreect training Robot-assisted VR (NJIT- RAVR) for UE	5 sessions \times 2 w	Semi-immersive	None
Abbreviations: Fugl-Meyer Ass. Jersey Instituté	3D, 3-dimensional; ARAT, sssment; JTHFT, Jebsen-T. of Technology Robot-As: RT-STS-16, sixteen-ruiest	, Action Researd aylor Hand Fun- sisted Virtual Re	ch Arm Test; BBT, Box ction Test; MCA, middl. ehabilitation; OT, occu	and Block Test; BI, Barl e cerebral artery; MFT, N pational therapy; POMA remity: WMFT Wolf Morr	thel Index; CAHA: Aanual Function 7 , Performance Ori or Function Test	I, Chedoke Arm and Han Fest; MMAS, Modified Mo iented Mobility Assessme	d Activity Inventory; FAC, F tor Assessment scale; NHPT, ent; PT, physical therapy; RA	⁻ unctional Amb , Nine Hole Pe MI, Rivermead	oulation Category; FMA, g Test; NJIT-RAVR, New Mobility Index; rs-fMR,
		- J							

related spectral perturbations were lateralized in the affected hemisphere.

The same research group conducted another 2 cases studies, with 3 participants and 1 participant, respectively.^{37,40} The high resolution-EEG system was used synchronously with the VR training system to measure cortical activity during tasks. The 3 cases showed mixed results for the interhemispheric dominance measured by lateral index of SM1 and the activation of inferior frontal gyrus observed during the VR tasks.³⁷ One case presented reduced bilateral over-recruitment of SM1 and the cerebellum, especially in the ipsilesional hemisphere, and improvement of the oscillatory processing pattern, which tended to return to normal.⁴⁰ A single case study reported increased event related potential P300 amplitude of the ipsilesional hemisphere, which was correlated with the improvement of cognitive function scores and standard neglect test.⁵² Another study with 4 participants found enhanced corticomuscular coherence at beta band.⁴⁶

Transcranial magnetic stimulation

In a CCT, a significant expansion of ipsilateral M1 TMS mapping of hand muscles was shown during the intervention period, whereas there was no significant difference between the VR and control groups.⁴³ In another study, the corticospinal excitation of the tibialis anterior muscle was improved in interhemispheric symmetry after the VR balance training.³⁰ Two studies found an increased TMS mapping of the affected first dorsal interosseous side.^{47,49} In an RCT, only the VR group used the navigated TMS to assess corticospinal excitability and cortical reorganization. The results revealed enhanced excitability of the distal muscle in the affected side as well as a displacement of centroid of cortical map in the lesioned hemisphere.³⁴

Functional outcome measure

In addition to neural plasticity outcomes, many studies also collected functional outcome data. These measures ocused on the body structure/function impairments and activity limitation domains of the ICF model. The detailed information is listed in table 1, and the correlation between functional outcome measures and neural plasticity measures is in table 5.

Discussion

Although VR has been increasingly used in stroke rehabilitation and various clinical trials and systematic reviews have demonstrated its clinical effects, the underlying neurophysiological mechanisms are not fully understood. This systematic review aimed to evaluate and summarize the current evidence of VRinduced neural plasticity in survivors of stroke. After a period of VR intervention, the common neurophysiological findings include: (1) improved interhemispheric balance, with a shift of activation from the contralesional to the ipsilesional SM1 dominance during the paretic limb movement^{27,29,31,33,35,36,38,39,41,42,48}. (2) enhanced connectivity between different functional areas^{35,36,38,45,51}; (3) increased cortical representation mapping of the affected limb muscles^{43,47,49}; (4) improved neural plasticity were correlated to enhanced measures behavior outcomes^{21,27,34,36,45,49,52}; (5) increased activation of regions in the frontal cortex 21,28,32,50 ; and (6) the mirror neuron system may be involved in VR interventions^{28,3}

Virtual reality in stroke rehabilitation

Table 2 Therapeutic advantages of the VR systems used in the VR systems us	ne studies
VR System	Therapeutic Advantages
Nonimmersive VR: The desktop or laptop screens are typically used to preser interaction in the virtual environment. The platform does not fully occlud Kinect-based VR ³¹	It the virtual environment to the user, and the user experiences low sense of immersion and e the user's field of view. Examples: computer monitor, TV screen. Promote the use of the impaired limb
VR bilateral UE training ³²	Structured practice
·	Augmented feedback
Nintendo Wii Fit ³⁰	Variable practice
Leap motion VR ⁴²	Task-oriented practice
	Avatar representation
VD and an and the start 11 ²⁷	Promote the use of the impaired hand
VK ennanced treadmill	Task-onented practice Progressive difficulty levels
Semi-immersive VR: A partially virtual environment is provided for the user	to interact with. The user's sense of immersion and interaction is between the nonimmersive and full
immersive VR. Examples: panoramic TV, large screen projector system.	
An early prototype of a VR system ³⁹	Task-oriented practice
	Progressive difficulty levels
	Avatar representation
	Mirror feedback
Rehab Gaming System ³⁴	Task-oriented practice
	Variable practice
	Progressive difficulty levels
	Avalat representation
	Augmented feedback
IREX VR games ^{29,33}	Task-oriented practice
	Progressive difficulty levels
	Variable practice
	Avatar representation
	Implicit feedback: knowledge of performance
	Explicit feedback: knowledge of results
21	Faded feedback
IKEX VK games gesture therapy	Task-oriented practice Progressive difficulty levels Variable practice
	Promote the use of the impaired limb
Lokomat with VR ²⁸	Task-oriented practice
	Tailored robot haptic assistance
	Multisensory feedback
37.40	Avatar representation
Robotics VR system ³⁷ / ¹⁰	lask-onented practice
Hantic robotics VP ⁴⁸	Tack-oriented practice
	Progressive difficulty levels
	Tailored robot haptic assistance
NJIT-RAVR ^{35,36,38,41,43,47,49}	Task-oriented practice
	Progressive difficulty levels
	Tailored robot haptic assistance
.50.51	Avatar representation
RehAtt VR 3D game for neglect ^{30,31}	Multisensory stimulation
	Progressive dimculty levels
RTS RIRVANA VR system for neglect ⁵²	Multisensony stimulation
bis bitter and system for neglect	Progressive difficulty levels
	Avatar representation
Full immersive VR: Immersive VR encompass the overall sense of the user. The	ne real world is totally displaced by the virtual environment. The sense of immersion and interaction
are the highest. The platform fully occludes the users' field of view. Examp	oles: head mounted display, CAVE.
Immersive VR mirror therapy ⁴⁵	Task-oriented practice
	Progressive difficulty levels
EMC based VD feedback system ⁴⁶	Mirror therapy
Emb based VK reedback system	lask-oriented practice
	FMG hinfeedback
	Avatar representation
MNVR-Rehab system ⁴⁴	Task-oriented practice
	Progressive difficulty levels
	Mirror therapy

VR intervention

A mix of VR paradigms were found across the included studies, and there were some studies using the same VR systems (see table 5). VR is not a universal intervention, although some basic concepts and features are shared across different VR systems. Each VR system could be different from others regarding virtual environment platforms, task complexity, user experience, and other factors, depending on the purpose and technology used in product design. However, most systematic review and meta-analysis studies tends to combine those different VR systems and explore the overall effectiveness. Although the diverse VR systems included in this systematic review harness the inclusiveness, it could also lead to difficulty in the interpretation of the results. This is especially true for the neutral results, which are commonly seen in rehabilitation studies.

In this review, most studies used specific VR systems and only 2 used the off-the-shelf VR gaming systems (Kinect and Nintendo). The specific VR systems were designed for the purpose of rehabilitation and involved tangible user interfaces and focused the skills transfer to functional activities.¹⁰ Some of them were still at the early exploratory phase and strictly used in research. In contrast, commercial VR games were play based and recreation purposed and could be more portable, accessible, and inexpensive to use. With the ongoing debates on whether one type is superior to the other in stroke rehabilitation,^{2,56} a recent meta-analysis demonstrated that the specific VR systems were more effective than commercial VR games in upper limb recovery.⁵³ Owing to only 2 included articles reporting on commercial VR systems, comparison of these 2 types of VR systems in this review was not feasible, and the results should be interpretated with caution.

Immersion level is an important feature of VR because it reflects the design of virtual environment and directly influences the user's sense of presence and enjoyment.⁵⁷ Presence could indicate the extent to which the virtual environment represents the real world for the user.⁵⁴ Although immersion has been discussed in other fields regarding VR design, little attention has been paid to explore its implication in rehabilitation. Based on the limited number of studies, there is a mixed result of the effect of different levels of VR immersion on performance outcomes. Compared with regular computer monitors, participants in the immersive CAVE system reported more presence and better learning experience.⁵⁸ A positive relationship was found between immersion and retrieval movements for virtual objects in survivors of stroke.59 There was no significant difference in upper extremity motion when the VR was displayed via fully immersive compared with semi-immersive devices.⁶⁰ An RCT found that the nonimmersive VR Nintendo Wii system was not superior to recreational activity for upper extremity function recovery in survivors of stroke.⁶¹ One study reported the effect of immersion level on cortical activity. Slobounov et al⁶² found that fully immersive VR required more brain and sensory resource allocation in motor tasks than less immersive VR, which indicated that specific VR design could elicit specific brain recruitment pattern during tasks. Among the 26 studies included this systematic review, 6 used nonimmersive VR, 18 used semi-immersive VR, and 2 used fully immersive VR. We found that each immersion level of VR could induce neural plasticity changes, although the outcome could not be directly compared among the 3 categories of immersion owing to the heterogeneity of the tools to measure neural plasticity. Whether immersion level could affect neural plasticity in VR intervention studies remains unknown. It is important to take VR features into consideration for the future studies that focus on the effects of VR in rehabilitation.

lable 3 Ph	iysiotherapy Evide	ence Database	assessment sco	res for randomized	a controlled and	l clinical contr	olled thals					
	Eligibility	Random	Concealed	Baseline	Blind	Blind	Blind	Adequate	Intention-to-	Between Group	Point Estimates	Total
	Criteria	Allocation	Allocation	Comparability	Participants	Therapists	Assessors	Follow-Up	Treat	Comparisons	and Variability	Score
Ballester et a	1 ³⁴ Yes	1	0	1	0	0	0	1	1	1	1	6
Calabrò et al	28 Yes	1	1	1	1	0	1	1	1	1	1	9
Jang et al ³³	Yes	1	1	1	0	0	0	1	1	1	1	7
Lee et al ³²	Yes	1	0	1	0	0	0	1	1	1	1	9
Mekbib et al ⁴	44 Yes	1	1	1	0	0	1	0	1	1	1	7
Saleh et al ^{36*}	Yes	0	0	1	0	0	0	1	1	1	1	5
Patel et al ^{43*}	Yes	0	0	1	0	0	0	1	1	1	1	5
Wang et al ⁴²	Yes	1	0	1	0	0	1	1	1	1	1	7
You et al ²⁹	Yes	1	0	1	0	1	1	1	1	1	1	∞
* Indicates a	clinical controlled	l trial.										

Study	Туре	Good	Fair	Poor
Schuster-Amft et al ³⁹	Case series	\checkmark		
Bao et al ³¹	Pre-post		\checkmark	
Comani et al ³⁷	Case series			\checkmark
Comani et al ⁴⁰	Case series		\checkmark	
Ekman et al ⁵⁰	Pre-post		\checkmark	
Orihuela-Espina et al ²¹	Pre-post		\checkmark	
De Luca et al ⁵²	Case series		\checkmark	
Mekbib et al ⁴⁵	Pre-post		\checkmark	
Omiyale et al ³⁰	Pre-post		\checkmark	
Marin-Pardo et al ⁴⁶	Pre-post		\checkmark	
Patel et al ⁴⁷	Pre-post			\checkmark
Saleh 2011 ³⁸	Case series		\checkmark	
Saleh 2012 ³⁵	Case series		\checkmark	
Tunik et al ⁴¹	Case series		\checkmark	
Turolla et al ⁴⁸	Pre-post		\checkmark	
Wåhlin et al ⁵¹	Pre-post		\checkmark	
Xiao et al ²⁷	Pre-post		\checkmark	
Yarossi et al ⁴⁹	Pre-post	\checkmark		

Levin⁶³ proposed that VR could offer enriched environments for rehabilitation, which provided a putative explanation of why VR could affect neural plasticity. The enriched environment refers to the housing conditions that facilitate the enhanced motor, sensory, cognition stimulation, and social interaction compared with the standard housing conditions.⁶⁴ The enriched environment could promote the experience-dependent plasticity in stroke, with the effects shown at the molecular,⁶⁵ cellular,^{66,67} and behavioral^{68,69} levels. Compared with conventional rehabilitation approaches, VR illustrates the main components of environmental enrichment by creating an immersive and interactive environment with multimodal stimulation to engage the active participation of the patients. With the 2 main components, enriched environment and environmental novelty and complexity, a more intensive learning experience could be achieved.⁶³ VR has a promising potential to transfer the core tenets of enriched environment from animal models to clinical rehabilitation and offer individualized training environments to drive neural plasticity and optimize functional recovery.

Neural plasticity measurements

In the preclinical studies, neural plasticity could be measured at the molecular, synaptic and cellular levels on the animal models, whereas the 2 commonly used methods for the human participants are neuroimaging and electrophysiological techniques. More than half of the included studies used fMRI to measure neuroimaging outcomes. Using the blood oxygen level dependent signal as an indirect measure of neural activity, fMRI is able to identify patterns of brain activation during motor task or resting at high spatial resolution, but the temporal resolution is poor. EEG is portable and less expensive than fMRI but has poor spatial resolution and only limits to the cortical activity. As a noninvasive brain stimulation protocol, TMS could be used to both modulate and measure the brain excitability and plasticity, as well as provide cortical mapping for the motor area. The information we can get from these neural plasticity measures could serve as neurophysiological biomarkers to inform prognosis and precise intervention.⁷⁰ A systematic review including 13 fMRI studies indicated that identifying certain patterns of cortical activation through fMRI could

suggest time-dependent reorganization in cerebral networks that accompany functional recovery post stroke.⁷¹ In patients with a favorable recovery, the overactivations of primary and association motor areas are transient and tend to return to original state, whereas in patients with poor recovery, the altered brain activation is typically persistent.⁷¹ Furthermore, a longitudinal fMRI study showed the improvement of motor function measured by Medical Research Council scale was significantly correlated with the lateral index, one of the main parameters calculated through the results of fMRI (r=0.85. P<.05).⁷² Another meta-analysis examined the neural plasticity changes demonstrated by TMS and fMRI after movement-based therapy in survivors of stroke, and found neural changes accompany the mitigation of motor function deficits.⁷³ Significant correlations between pre-post lateral index changes of motor map area measured by TMS and hand motor function was found, at both the first (r=0.62, P=.04) and second (r=0.61, P=.06) follow-up evaluation.⁷⁴ The reliability of fMRI⁷⁵ and TMS⁷⁶ to evaluate change in individuals with stroke was also substantiated (intraclass correlation coefficient>0.70). By measuring the electrical activity of the brain, EEG can identify salient neural substrates underlying specific functional impairments, aid the selection of intervention, and provide better prognostic information.⁷⁷ Quantitative EEG parameters displayed not only clinical relevance but also multilevel reproducibility and reliability in the evaluation of the population with stroke (intraclass correlation coefficient >0.90).⁷⁸ Above all, the neural plasticity measure techniques used in the included studies are valid approaches to correlate the objective functional measures that are valid and reproducible. The use of aforementioned techniques can aid rehabilitation professionals to appreciate the individual's spatial and temporal neural plasticity change patterns after VR intervention, thus granting the potential to track recovery progress, establish patient's response, and tailor the training modules to fit the individualized program.

Improved interhemispheric balance

Motion execution of 1 extremity is mainly innervated by the contralateral M1 though the corticospinal tract with some

Table 5	Effects of	VR interventi	on on neu	ral plasticity	: summary a	and checklist

www.archives-pmr.org

Ci ul	10		Improved Interhemispheric	Enhanced Cortical	Increased TMS	Correlation With Functional	Increased Frontal	Mirror Neuron System
Study	VR	Neural Plasticity Assessment Types and Outcomes	Balance	Connectivity	Mapping	Outcomes	Cortex Activation	Involvement
Nonimmersive VR	Kinect-based VR	fMPT: 4 in 5 cases increased the contralatoral	./					
Dao et at	Kinett-based VK	activation of SM1; 1 case decreased the extent but increased the magnitude of SMA and CRB activation.	v					
Lee et al ³²	VR bilateral UE training	EEG: Increased concentration and brain activity of the frontal lobe.					\checkmark	
Omiyale et al ³⁰	Nintendo Wii Fit	TMS: Increased interhemispheric symmetry of corticomotor excitability induced by tibialis anterior muscle.	\checkmark					
Wang et al ⁴²	Leap motion VR	fMRI: Shift in SMC activation from ipsilateral to contralateral (LI), increased contralateral SMC activation.	\checkmark					
Xiao et al ²⁷	VR enhanced treadmill	fMRI: Increased ipsilesional SMC and bilateral SMA activation. Correlation: increased SMC was correlated with decreased 10 m walking time.	\checkmark			\checkmark		
Semi-immersive VR		-						
Schuster-Amft et al ³⁹	An early prototype of a VR system	fMRI: Decreased bilateral activation, increased ipsilesional SM1 and SMA activation.	\checkmark					
Ballester et al ³⁴	Rehab Gaming System	TMS: Enhanced excitability of CST for the distal APB muscle, centroid displacements of the cortical map for both APB and ECR. Correlation: centroid displacement of the ECR is positively correlated with the CAHAI improvement.				\checkmark		
Calabrò et al ²⁸	Lokomat with VR	EEG: Stronger event-related spectral perturbations in the high- γ and β bands and larger fronto- central cortical activations in the affected hemisphere. More evident activation of premotor, precuneus and associative visual areas. ERSPs were lateralized in the affected hemisphere. The mirror neuron system may be encompassed.					\checkmark	\checkmark
Comani et al ⁴⁰	Robotics VR system	EEG: 1 case showed reduced bilateral over- recruitment of SM1 and CRB, especially in the ipsilesional hemisphere; improvement of the oscillatory processing pattern						
Comani et al ³⁷		EEG: 3 cases showed a mixed results of LI shift; activation of IFG during VR rehabilitation						\checkmark
Orihuela-Espina et al ²¹	IREX VR games gesture therapy	fMRI: Contralesional activation of the unaffected M1, CRB recruitment, and compensatory PFC activation were the most prominent strategies evoked. Correlation: positive correlation between motor dexterity and total brain recruited activity.				\checkmark	\checkmark	
							(continued	d on next page)

ARTICLE IN PRESS

10

Table !	5 (Contir	nued)

Jang et al ³³ You et al ²⁹ Turolla et al ⁴⁸ Patel et al ⁴⁷ Patel et al ⁴³ Saleh et al ³⁸ Saleh et al ³⁵	IREX VR system Haptic robotics VR	 fMRI: Increased ipsilesional SM1 activation (LI), decreased widespread bilateral activation of SM1, SMA and contralesional PMC. fMRI: Shift in SMC activation from ipsilateral to contralateral (LI), the LI value after VR was comparable to normal subjects. fMRI: 1 case showed decreased insilateral 	\checkmark				
You et al ²⁹ Turolla et al ⁴⁸ Patel et al ⁴⁷ Patel et al ⁴³ Saleh et al ³⁸	Haptic robotics VR	fMRI: Shift in SMC activation from ipsilateral to contralateral (LI), the LI value after VR was comparable to normal subjects. fMRI: 1 case showed decreased insilateral	\checkmark				
Turolla et al ⁴⁸ Patel et al ⁴⁷ Patel et al ⁴³ Saleh et al ³⁸ Saleh et al ³⁵	Haptic robotics VR	fMRI: 1 case showed decreased insilateral					
Patel et al ⁴⁷ Patel et al ⁴³ Saleh et al ³⁸ Saleh et al ³⁵		activation and the activation of the affected hemisphere was closer to the normal pattern.	\checkmark				
Patel et al ⁴³ Saleh et al ³⁸ Saleh et al ³⁵	NJIT-RAVR	TMS: 2 cases showed increased volume and area of FDI mapping of the paretic hand, improved cortical excitability			\checkmark		
Saleh et al ³⁸ Saleh et al ³⁵		TMS: both groups showed increased ipsilesional TMS map area during treatment, no between group difference. However, as an additional intervention, VR showed enhanced impairment and behavior outcomes.			\checkmark		
Saleh et al ³⁵		fMRI: 3 of 4 cases increased ipsilesional M1 (LI), increased functional connectivity between insilesional M1 and bilateral SM1		\checkmark			
		rs-&task- fMRI: 2 cases showed decreased extent of activation of contralesional M1 and SMA; 1 case showed decreased functional connectivity between iM1 and cM1, the other showed increased; both 2 cases showed increase in task related connectivity between ipsilesional M1 and SMA.		\checkmark			
Saleh et al ³⁶		fMRI: Reduced magnitude and extent of activation compared with repetitive task practice group, shift in SMC activation form contralesional to ipsilesional (LI); facilitation of M1 by S1 (effective connectivity). Correlation: correlation between ipsilesional M1, ventral premotor area, bilateral S1 and JTHFT changes; effective connectivity and posttest JTHFT.	\checkmark	\checkmark		\checkmark	
Tunik et al ⁴¹		fMRI: 1 case showed increased activation of insilesional M1	\checkmark				
Yarossi et al ⁴⁹		TMS: Increased TMS map of FDI muscle in ipsilesional hemisphere. Correlation: for the MEP+ patients, increased FDI in ipsilesional hemisphere had significant correlations with improvement of WMFT, BBT and finger AROM; but not for the MEP- patients.			\checkmark	\checkmark	

11

Study	VR	Neural Plasticity Assessment Types and Outcomes	Improved Interhemispheric Balance	Enhanced Cortical Connectivity	Increased TMS Mapping	Correlation With Functional Outcomes	Increased Frontal Cortex Activation	Mirror Neuron System Involvement
Ekman et al ⁵⁰	RehAtt VR 3D game for neglect	fMRI: Increased activation of the PFC, including the anterior cingulate cortex and dorsolateral PFC; increased activation in the bilateral middle and superior temporal gyrus					\checkmark	
Wåhlin et al ⁵¹		rs-fMRI: Longitudinal increase in interhemispheric functional connectivity in the dorsal attention network, between right frontal eye field and left intraparietal sulcus.		\checkmark				
De Luca et al ⁵²	BTS BIRVANA VR system for neglect	EEG: Increased ERP P300 amplitude of the impaired hemisphere (return back to the normal). Correlation: Increased ERP 300 was correlated with improvement in cognitive function scores and time in standard neglect tests.				\checkmark		
Full immersive VR		5						
Mekbib et al ⁴⁵	Immersive VR mirror therapy	rs-fMRI: Increased functional connectivity between contralesional M1, bilateral S1, ipsilesional superior parietal gyrus, CRB with lesioned M1. Correlation: the increased M1-M1 connectivity is positively correlated to the change of FMA.		\checkmark		\checkmark		
Marin-Pardo et al ⁴⁶	EMG based VR feedback system	EEG: Enhanced corticomuscular coherence at beta band (12-30 Hz).						
Mekbib et al ⁴⁴	MNVR-Rehab system	rs-fMRI: Functional connectivity maps associated with the M1 were reestablished in the contralesional brain regions, including the M1, S1, superior frontal gyrus and superior parietal gyrus.		\checkmark				\checkmark

Abbreviations: APB, abductor pollicis brevis; AROM, active range of motion; BBT, Box and Block Test; CAHAI, Chedoke Arm and Hand Activity Inventory; CRB, cerebellum; CST, corticospinal tract; ECR, extensor carpi radialis; ERP, event-related potential; ERSP, event-related spectral perturbation; FDI, first dorsal interosseous; FMA, Fugl-Meyer assessment; IFG, inferior frontal gyrus; JTHFT, Jebsen-Taylor Hand Function Test; LI, lateral index; MEP, motor evoked potential; SMC, sensorimotor cortex; UE, upper extremity; WMFT, Wolf Motor Function Test

involvement of the ipsilateral hemisphere through transcallosal connections.^{79,80} However, brain injury could affect the interhemispheric interaction that participates motor control. In the early stage of stroke, over-recruitment of the contralesional SM1 is commonly induced by paretic limb motion. This abnormal brain activation pattern and interhemispheric imbalance have been interpreted by GABA-A receptor-mediated short-interval intracortical inhibition and GABA-B receptor mediated interhemispheric inhibition.⁸¹ Reduced inhibition signals from the lesioned hemisphere contribute to the overactivation of the intact hemisphere. In turn, the intact hemisphere continues to inhibit the lesioned side, which leads to suppressed brain activation. This imbalance of activation is mitigated postrecovery, yet this phenomenon can persist for years.⁸² After a period of VR-based rehabilitation, a shift of activation from the contralesional to ipsilesional SM1 reflects improved interhemispheric balance. This pattern is consistent with the findings of previous studies in terms of physical therapyinduced neural plasticity.83,84 Carey et al85 demonstrated that, after a period of intensive finger tracking training, there was a reversion from the contralesional control to the normal ipsilesional control of the affected hand motion. This reorganization pattern parallels with motor recovery.86 VR-induced neural plasticity identified in this review showed not only the consistent direction of activation shifts, but also could augment the magnitude of reorganization compared with conventional rehabilitation. Wang et al⁴² and Saleh et al³⁶ demonstrated that VR group reached this pattern more significantly than the time-matched rehabilitation approaches (occupational therapy and robotic-based therapy). This is the most pronounced pattern, supported by 11 studies in this review, with 2 RCTs and 1 CCT, and all studies have good to fair quality. Further clinical trials are still warranted to confirm and clarify this phenomenon.

Enhanced cortical connectivity

VR-induced neural plasticity was also revealed through connectivity analysis from a network-level view. In this systematic review, 4 studies showed the improvement of connectivity in the motor network, and 1 study showed improvement in the dorsal attention network. Using a VR intervention for motor deficits, increased functional connectivity was found between ipsilesional M1 and bilateral SM1,³⁸ SMA,³⁵ contralesional M1, bilateral S1, ipsilesional superior parietal gyrus, and cerebellum.⁴⁵ Improvement in effective connectivity showed facilitation of M1 by S1,^{36,45} and was positively correlated to behavior outcomes. After stroke insult, both the focal damage and the disturbance of the neural network contribute to the deficits. These detrimental effects of the lesion go beyond the anatomic site: the remote areas could also be affected⁸⁷ and the abnormal connectivity could be persistent. The intra- and inter-hemispheric connectivity between the ipsilesional M1 and other areas is disturbed due to stroke. Rehme et al⁸⁸ found the positive coupling of ipsilesional SMA and PMC with ipsilesional M1 was reduced in patients with acute stroke. For subacute patients, the functional connectivity between ipsilesional SMA and M1, and interhemispheric coupling of both SMAs was reduced.⁸⁹ In patients with chronic stroke, decreased connectivity of ipsilesional M1 with contralesional SM1, bilateral SMA, inferior parietal lobule was found.⁹⁰ The treatment-induced plasticity showed improvement in connectivity. James et al⁹¹ found that, after 3 weeks of upper extremity rehabilitation, the motor network effective connectivity was improved by the increased facilitation of bilateral PMC to ipsilesional M1. Fan et al⁹² found 4 weeks robotic rehabilitation elicited increased functional connectivity between ipsilesional M1 and contralesional M1, bilateral PFC, and cerebellum. The increased connectivity between ipsilesional M1 and contralesional M1, medial superior frontal gyrus was reported after rehabilitation.⁹⁰

Increased activation of frontal lobe

Four studies reported an increased activation of frontal lobe after VR intervention. Two EEG studies, RCTs with good quality, found increased concentration and brain activity in the frontopolar and frontal areas³² and increased fronto-central cortical activations.²⁸ Two fMRI studies found increased prefrontal cortex activation.^{21,50} The increased activation of this region after VR intervention might reflect the compensatory cortical reorganization, in which the nonmotor areas are adaptively engaged with motor function recovery. Overactivation of PFC in the chronic stage of stroke recovery found in other studies indicated the engagement of the executive process in performing motor task and the involvement of attention resources.93,94 For VR intervention targeted at the neglect training,50 the increased task-related brain activity at the PFC related to the goal-directed behavior and complex cognitive processing. The PFC was also found to modulate the neuronal network associated with the experience of presence in the VR environment,95 and it could be activated in response to the external perturbation in VR balance tasks involving attention.96,97

Expansion of TMS mapping

The expansion of TMS affected hand muscle representations^{3,47,49} and improved symmetry of corticomotor excitability³⁰ was reported after VR intervention. Significant correlations were found between the TMS mapping area and the functional outcomes.⁴⁹ With the progression of the motor recovery and increased use of the affected limb, expansion of TMS mapping reflects the use-dependent plasticity. This reorganization pattern was also consistently found in previous studies, and the treatment protocol included constraint-induced movement therapy, conventional rehabilitation, bilateral arm training, and task-oriented training.⁷³ The improvement presented in the TMS mapping is positively correlated to behavior outcomes and this brain plasticity measure could be used as a biomarker for functional recovery.⁷⁴

The involvement of mirror neuron system

The involvement of mirror neuron system reveals the possible specific neural mechanisms of VR. The core mirror neuron system in human includes the inferior parietal lobule, ventral premotor cortex, and inferior frontal gyrus; it is more like a functionally distributed network involving the primary and secondary motor areas rather than specific separate regions.⁹⁸ In recent decades, the concept of the mirror neuron system has brought insights on neurorehabilitation. Motor observation, imitation and imagery could activate similar circuits as execution, providing effective surrogates for the motor recovery approaches. The concept of mirror neuron system was also integrated into the design and development of VR system.⁹⁹ The avatar in the virtual environment serves as the external representative of the user, so during VR training the patients are not only performing motor tasks, but also observe and imitate the motions with the augmented feedback information over the real environment. As shown in table 2, several VR systems in the included studies used the avatar presentation as therapeutic advantages. Additionally, "learning by imitation" could be enhanced in the virtual environment by the facilitation of the direct input to M1 via mirror neuron.¹⁰⁰ A study¹⁰¹ showed that the action observation system, as supported by the mirror neuron concept during hand motion observation, imagery and imitation could be elicited by the VR system.

Study limitations

This systematic review has several limitations. First, only 9 controlled trials (7 RCTs and 2 CCTs) were selected and suggested the difference of neural plasticity outcomes between VR intervention and conventional rehabilitation. The remaining 18 studies did not have control group; thus, the results were presented as prepost changes occurred with VR. Second, most studies had a small sample size, which limited the generalization and undermined the reliability of the findings. It also hampered the ability to perform correlation analysis between neural plasticity and functional outcomes. Third, the heterogeneity of VR paradigms and neural plasticity measures are high, which made it difficult to draw conclusions about VR-specific neural plasticity effects based on current information. Further VR system development with standardized neuroimaging measures should be considered to investigate VR-specific neural plasticity. Neural plasticity in stroke recovery is complex. The underlying mechanism could depend on many clinical factors including lesion type, location, severity, and stroke chronicity. Many included studies did not classify patients based on these essential factors, which could increase bias. In addition, for therapeutic advantages of each VR system summarized in table 2, it should be clarified that the included studies may not provide all details of VR intervention and these advantages were extracted by the corresponding authors. Some systems may possess more beneficial features implementing neurorehabilitation principles that were not reported and detected. Lastly, this review included studies that have more than 1 mechanism beyond VR to improve neural plasticity, and it could confound the results. The neural plasticity measurements we cited have a wide range of outcomes regarding their sensitivity and specificity with regards to clinical outcomes,¹⁰² which has limited their use in the clinical setting.

Future Research

We recommend future research should focus on the design of high-quality RCTs with larger sample size focusing on influence of VR on neural organization with the aim to detect the VR specific effect on neural plasticity. The use of active control is favored, because it matched the treatment time received in both groups and eliminate the potential confounding. Great homogeneity in terms of patient's characteristics should be achieved to control the intersubject variations. Adequate follow-up evaluations after intervention could aid elucidate the long-term effects of VR. The design and selection of VR systems should consider the therapeutic advantages, and studies should report VR intervention protocol in detail to help identify the specific effects of VR.

Conclusions

VR-induced changes in neural plasticity for survivors of stroke; these changes reflected the neural substrates of restoration and compensation of functional deficits. The positive correlation between neural plasticity changes and functional recovery elucidates the mechanisms of the therapeutic effects of VR in stroke rehabilitation. It should be noted that only a few included studies were RCTs with adequate sample size, and because VR is not a universal intervention regimen, more studies in this field are warranted with the consideration of differences in VR system. This review prompts the systematic understanding of the neurophysiological mechanisms of VR-based stroke rehabilitation and summarizes the emerging evidence for ongoing innovation of VR system and its application in stroke rehabilitation.

Keywords

Neuroimaging; Neuronal plasticity; Rehabilitation; Stroke rehabilitation; Virtual reality

Corresponding author

Ka-Chun Siu, PhD, 984420 Nebraska Medical Center, Omaha, NE 68198-4420. *E-mail address:* kcsiu@unmc.edu.

Medline via Ebsco search strategy

(MH "Neuronal Plasticity+") OR TI (neuroplastic* OR ((Remap* OR re-map* OR re-organiz* OR re-organis* OR reorganiz* OR reorganis* OR plastic*) N10 (brain OR cerebral OR frontal OR temporal OR parietal OR occipital OR cortex OR cortical OR synap* OR neural OR interneuronal OR inter-neuronal OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR Wernicke OR activity-dependent))) OR AB (neuroplastic* OR ((Remap* OR re-map* OR re-organiz* OR reorganis* OR reorganiz* OR reorganis* OR plastic*) N10 (brain OR cerebral OR frontal OR temporal OR parietal OR occipital OR cortex OR cortical OR synap* OR neural OR interneuronal OR inter-neuronal OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR Wernicke OR activitydependent)))

AND

(MH "Stroke+") OR AB ((stroke* OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR CVA* OR "cerebral vascular accident" OR "cerebrovascular accident" OR "cerebral vascular accidents" OR "cerebrovascular accidents" OR ((brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR "motor cortex" OR "sensorimotor cortex" OR "olfactory cortex" OR "auditory cortex" OR "visual cortex") AND (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*)))) AND TI ((stroke* OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR CVA* OR "cerebral vascular accident" OR "cerebrovascular accident" OR "cerebral vascular accidents" OR "cerebrovascular accidents" OR ((brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR "motor cortex" OR "sensorimotor cortex" OR "olfactory cortex" OR "auditory cortex" OR "visual cortex") AND (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*))))

AND

(MH "Virtual Reality") OR (MH "Virtual Reality Exposure Therapy") OR (MH "Augmented Reality") OR (MH "Computer-Aided Design+") OR TI ("virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming) OR AB ("virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming)

PsycInfo search strategy

DE "Brain Training" OR DE "Brain Stimulation" OR DE "Neural Plasticity" OR TI (neuroplastic* OR ((Remap* OR re-map* OR re-organiz* OR re-organis* OR reorganiz* OR reorganis* OR plastic*) N10 (brain OR cerebral OR frontal OR temporal OR parietal OR occipital OR cortex OR cortical OR synap* OR neural OR interneuronal OR inter-neuronal OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR Wernicke OR activity-dependent))) OR AB (neuroplastic* OR ((Remap* OR re-map* OR re-organiz* OR re-organis* OR reorganiz* OR reorganis* OR plastic*) N10 (brain OR cerebral OR frontal OR temporal OR parietal OR occipital OR cortex OR cortical OR synap* OR neural OR interneuronal OR inter-neuronal OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR Wernicke OR activity-dependent)))

AND

DE "Cerebrovascular Accidents" OR DE "Cerebral Ischemia" OR AB ((stroke* OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR CVA* OR "cerebral vascular accident" OR "cerebrovascular accident" OR "cerebral vascular accidents" OR "cerebrovascular accidents" OR ((brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR

epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR "motor cortex" OR "sensorimotor cortex" OR "olfactory cortex" OR "auditory cortex" OR "visual cortex") AND (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*)))) AND TI ((stroke* OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR CVA* OR "cerebral vascular accident" OR "cerebrovascular accident" OR "cerebral vascular accidents" OR "cerebrovascular accidents" OR ((brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR "motor cortex" OR "sensorimotor cortex" OR "olfactory cortex" OR "auditory cortex" OR "visual cortex") AND (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*))))

AND

DE "Virtual Reality" OR DE "Augmented Reality" OR DE "Virtual Reality Exposure Therapy" OR TI ("virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming) OR AB ("virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming)

CINAHL search strategy

(MH "Neuronal Plasticity") OR TI ((neuroplastic* OR ((Remap* OR re-map* OR re-organiz* OR re-organis* OR reorganiz* OR reorganis* OR plastic*) N10 (brain OR cerebral OR frontal OR temporal OR parietal OR occipital OR cortex OR cortical OR synap* OR neural OR interneuronal OR inter-neuronal OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR Wernicke OR activity-dependent)))) OR AB ((neuroplastic* OR ((Remap* OR re-map* OR re-organiz* OR reorganis* OR reorganiz* OR reorganis* OR plastic*) N10 (brain OR cerebral OR frontal OR temporal OR parietal OR occipital OR cortex OR cortical OR synap* OR neural OR interneuronal OR inter-neuronal OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR Wernicke OR activitydependent))))

AND

((MH "Stroke+") OR (MH "Stroke Patients")) OR (AB ((stroke* OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR CVA* OR "cerebral vascular accident" OR "cerebrovascular accident" OR "cerebral vascular

accidents" OR "cerebrovascular accidents" OR ((brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR "motor cortex" OR "sensorimotor cortex" OR "olfactory cortex" OR "auditory cortex" OR "visual cortex") AND (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*)))) OR TI ((stroke* OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR CVA* OR "cerebral vascular accident" OR "cerebrovascular accident" OR "cerebral vascular accidents" OR "cerebrovascular accidents" OR ((brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR Hypothal* OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR "motor cortex" OR "sensorimotor cortex" OR "olfactory cortex" OR "auditory cortex" OR "visual cortex") AND (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*)))))

AND

((MH "Virtual Reality+") OR (MH "Virtual Reality Exposure Therapy")) OR (TI ("virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming) OR AB ("virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming))

Embase search strategy

((brain OR cerebral OR frontal OR temporal OR occipital OR cortex OR synap* OR neural OR interneuronal OR 'inter neuronal' OR brainstem* OR pons OR medulla* OR midbbrain* OR cerebell* OR cerebrum* OR trigeminal OR limbic OR olfactor* OR parahippocamp* OR broca OR dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR 'activity dependent') NEAR/10 (neuroplastic* OR remap* OR 're map*' OR reorganiz* OR 're organiz*' OR reorganis* OR 're organis*' OR plastic*)):ti,ab OR 'nerve cell plasticity'/exp/mj

AND

'brain ischemia'/exp/mj OR 'cerebrovascular accident'/exp/mj OR stroke*:ti,ab OR 'hemorrhagic stroke':ti,ab OR 'transient ischemic attack':ti,ab OR 'acute ischemic stroke':ti,ab OR cva*:ti, ab OR 'cerebral vascular accident':ti,ab OR 'cerebrovascular accident':ti,ab OR 'cerebral vascular accidents':ti,ab OR 'cerebrovascular accidents':ti,ab OR ((brain*:ti,ab OR brainstem*:ti,ab OR pons:ti,ab OR medulla*:ti,ab OR midbrain*:ti,ab OR cerebell*:ti, ab OR cerebrum*:ti,ab OR cerebral:ti,ab OR trigeminal:ti,ab OR limbic:ti,ab OR frontal:ti,ab OR prefrontal:ti,ab OR occipital:ti,ab OR temporal:ti,ab OR amyg*:ti,ab OR epithal*:ti,ab OR hippocamp*:ti,ab OR broca:ti,ab OR dentate:ti,ab OR cingul*:ti,ab OR neocort*:ti,ab OR entorhinal:ti,ab OR priform:ti,ab OR parietal: ti,ab OR wernicke:ti,ab OR 'motor cortex':ti,ab OR 'sensorimotor cortex':ti,ab OR 'olfactory cortex':ti,ab OR 'auditory cortex':ti,ab OR 'visual cortex':ti,ab) AND (ischem*:ti,ab OR ischaem*:ti,ab OR embol*:ti,ab OR thrombo*:ti,ab OR thrombotic:ti,ab OR thrombosis:ti,ab OR thrombosis:ti,ab OR thromboses:ti,ab OR thrombi:ti,ab OR thrombus:ti,ab OR hemorrhag*:ti,ab OR haemorrhag*:ti,ab OR bleed*: ti,ab OR infarc*:ti,ab OR necro*:ti,ab))

AND

'virtual reality'/exp/mj OR 'virtual reality exposure therapy'/ exp/mj OR 'virtual reality head mounted display'/exp/mj OR 'virtual reality':ti,ab OR vr:ti,ab OR 'augmented reality':ti,ab OR 'mixed reality':ti,ab OR 'virtual environment':ti,ab OR 'video game':ti,ab OR 'video games':ti,ab OR gaming:ti,ab

IEEE XPlore Digital Library search strategy

(((Document Title:"virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR gaming OR "video games") OR Abstract:"virtual reality" OR VR OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR gaming OR "video games")))

AND

((All Metadata:stroke OR "brain ischemia" OR "ischemic attack" OR "cerebrovascular accident" OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR "cerebral vascular accident")))

AND

(((Document Title:"brain plasticity" OR "neuronal plasticity" OR "neural plasticity" OR "nerve cell plasticity" OR "synaptic plasticity" OR "brain remapping" OR "brain reorganiziation" OR "brain reorganisation" OR "neuronal remapping" OR "neuronal reorganisation" OR "neuronal reorganization") OR Abstract:"brain plasticity" OR "neuronal plasticity" OR "neural plasticity" OR "nerve cell plasticity" OR "synaptic plasticity" OR "brain remapping" OR "brain reorganiziation" OR "brain reorganisation" OR "neuronal reorganiziation" OR "brain reorganisation" OR "neuronal remapping" OR "neuronal reorganisation" OR "neuronal remapping" OR "neuronal reorganisation" OR "neuronal reorganization"))

Scopus search strategy

((TITLE (neuroplasticiy OR neuroplastic OR "neuronal plasticity" OR "nerve cell plasticity" OR "synaptic plasticity" OR "brain remapping" OR "brain remap" OR "neruonal remapping" OR "synaptic remapping") OR ABS (neuroplasticiy OR neuroplastic OR "neuronal plasticity" OR "nerve cell plasticity" OR "synaptic plasticity" OR "brain remapping" OR "brain remap" OR "neuronal remapping" OR "synaptic remapping")))

AND

(((ABS (brain* OR brainstem* OR pons OR medulla* OR midbrain* OR cerebell* OR cerebrum* OR cerebral OR trigeminal OR limbic OR frontal OR prefrontal OR occipital OR temporal OR amyg* OR epithal* OR hippocamp* OR hypothal* OR olfactor* OR parahippocamp* OR broca) OR ABS (dentate OR cingul* OR neocort* OR entorhinal OR piriform OR parietal OR wernicke OR 'motor AND cortex' OR 'sensorimotor AND cortex' OR 'olfactory AND cortex' OR 'auditory AND cortex' OR 'isual AND cortex' W/10 (ischem* OR ischaem* OR embol* OR thrombo* OR thrombotic OR thrombosis OR thromboses OR thrombi OR thrombus OR hemorrhag* OR haemorrhag* OR bleed* OR infarc* OR necro*))) OR ((TITLE (stroke OR "brain ischemia"

OR "ischemic attack" OR "cerebrovascular accident" OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR "cerebral vascular accident") OR ABS (stroke OR "brain ischemia" OR "ischemic attack" OR "cerebrovascular accident" OR "hemorrhagic stroke" OR "transient ischemic attack" OR "acute ischemic stroke" OR "cerebral vascular accident"))))

AND

((TITLE ("virtual reality" OR vr OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming) OR ABS ("virtual reality" OR vr OR "augmented reality" OR "mixed reality" OR "virtual environment" OR "video game" OR "video games" OR gaming)))

References

- 1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet 2011;377:1693–702.
- Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2017;11(11):CD008349.
- Holden MK. Virtual environments for motor rehabilitation. Cyberpsychol Behav 2005;8:187–211.
- Lange B, Koenig S, Chang C, et al. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil Rehabil 2012;34:1863–70.
- Rohrbach N, Chicklis E, Levac DE. What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review. J Neuroeng Rehabil 2019;16:79.
- Rand D, Givon N, Weingarden H, Nota A, Zeilig G. Eliciting upper extremity purposeful movements using video games: a comparison with traditional therapy for stroke rehabilitation. Neurorehabil Neural Repair 2014;28:733–9.
- Cameirao MS, SBi Badia, Duarte E, Frisoli A, Verschure PF. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 2012;43:2720–8.
- Ghai S, Ghai I, Lamontagne A. Virtual reality training enhances gait poststroke: a systematic review and meta-analysis. Ann N Y Acad Sci 2020.
- **9.** Li Z, Han X, Sheng J, Ma S. Virtual reality for improving balance in patients after stroke: a systematic review and meta-analysis. Clin Rehabil 2016;30:432–40.
- 10. Aminov A, Rogers JM, Middleton S, Caeyenberghs K, Wilson PH. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upperlimb and cognitive outcomes. J Neuroeng Rehabil 2018;15:29.
- Palma GC, Freitas TB, Bonuzzi GM, et al. Effects of virtual reality for stroke individuals based on the international classification of functioning and health: a systematic review. Top Stroke Rehabil 2017;24:269–78.
- 12. Lin R, Chiang S, Heitkemper MM, et al. Effectiveness of early rehabilitation combined with virtual reality training on muscle strength, mood state, and functional status in patients with acute stroke: a randomized controlled trial. Worldviews Evid Based Nurs 2020;17:158–67.
- Ho T, Yang F, Lin R, et al. Impact of virtual reality-based rehabilitation on functional outcomes in patients with acute stroke: a retrospective case-matched study. J Neurol 2019;266:589–97.
- Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008;51:S225–39.
- Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 2009;10:861–72.
- **16.** Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 2012;43:2819–28.

- Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 2011;7:76–85.
- Luque-Moreno C, Ferragut-Garcías A, Rodríguez-Blanco C, et al. A decade of progress using virtual reality for poststroke lower extremity rehabilitation: systematic review of the intervention methods. Biomed Res Int 2015;2015:342529.
- Karamians R, Proffitt R, Kline D, Gauthier LV. Effectiveness of virtual reality-and gaming-based interventions for upper extremity rehabilitation poststroke: a meta-analysis. Arch Phys Med Rehabil 2020;101:885–96.
- Deutsch J, McCoy SW. Virtual reality and serious games in neurorehabilitation of children and adults: prevention, plasticity and participation. Pediatr Phys Ther 2017 Jul;29 Suppl 3(Suppl 3 IV STEP 2016 CONFERENCE PROCEEDINGS):S23–36.
- Orihuela-Espina F, Fernandez del Castillo I, Palafox L, et al. Neural reorganization accompanying upper limb motor rehabilitation from stroke with virtual reality-based gesture therapy. Top Stroke Rehabil 2013;20:197–209.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- 23. Verhagen AP, De Vet HC, De Bie RA, et al. The delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by delphi consensus. J Clin Epidemiol 1998;51:1235–41.
- Cashin AG, McAuley JH. Clinimetrics: Physiotherapy evidence database (PEDro) scale. J Physiother 2019;66(1):59.
- National Heart, Lung, and Blood Institute. Quality assessment tool for before-after (pre-post) studies with no control group. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessmenttools. Accessed August 13, 2020.
- National Heart, Lung, and Blood Institute. Quality assessment tool for case series studies. Available at: https://www.nhlbi.nih.gov/ health-topics/study-quality-assessment-tools. Accessed August 13, 2020.
- Xiao X, Lin Q, Lo W, et al. Cerebral reorganization in subacute stroke survivors after virtual reality-based training: a preliminary study. Behav Neurol 2017;2017.
- Calabrò RS, Naro A, Russo M, et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil 2017;14:53.
- You SH, Jang SH, Kim Y, et al. Virtual reality—induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 2005;36:1166–71.
- Omiyale O, Crowell CR, Madhavan S. Effect of wii-based balance training on corticomotor excitability post stroke. J Mot Behav 2015;47:190–200.
- Bao X, Mao Y, Lin Q, et al. Mechanism of kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res 2013;8:2904.
- 32. Lee S, Kim Y, Lee B. Effects of virtual reality-based bilateral upperextremity training on brain activity in post-stroke patients. J Phys Ther Sci 2015;27:2285–7.
- 33. Jang SH, You SH, Hallett M, et al. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil 2005;86:2218–23.
- 34. Ballester BR, Nirme J, Camacho I, et al. Domiciliary VR-based therapy for functional recovery and cortical reorganization: randomized controlled trial in participants at the chronic stage post stroke. JMIR Serious Games 2017;5:e15.
- 35. Saleh S, Adamovich SV, Tunik E. In: Resting state functional connectivity and task-related effective connectivity changes after upper extremity rehabilitation: a pilot study. Annu Int Conf IEEE Eng Med Biol Soc 2012;2012:4559–62.
- 36. Saleh S, Fluet G, Qiu Q, Merians A, Adamovich SV, Tunik E. Neural patterns of reorganization after intensive robot-assisted virtual reality

therapy and repetitive task practice in patients with chronic stroke. Front Neurol 2017;8:452.

- 37. Comani S, Velluto L, Schinaia L, et al. Monitoring neuro-motor recovery from stroke with high-resolution EEG, robotics and virtual reality: a proof of concept. IEEE Trans Neural Syst Rehabil Eng 2015;23:1106–16.
- Saleh S, Bagce H, Qiu Q, et al. Mechanisms of neural reorganization in chronic stroke subjects after virtual reality training. Annu Int Conf IEEE Eng Med Biol Soc 2011;2011:8118–21.
- **39.** Schuster-Amft C, Henneke A, Hartog-Keisker B, et al. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Disabil Rehabil Assist Technol 2015;10:385–92.
- 40. Comani S, Schinaia L, Tamburro G, et al. In: Assessing neuro-motor recovery in a stroke survivor with high-resolution EEG, robotics and virtual reality. Annu Int Conf IEEE Eng Med Biol Soc 2015;2015:3925–8.
- Tunik E, Adamovich SV. In: Remapping in the ipsilesional motor cortex after VR-based training: a pilot fMRI study. Annu Int Conf IEEE Eng Med Biol Soc 2009;2009:1139–42.
- 42. Wang Z, Wang P, Xing L, Mei L, Zhao J, Zhang T. Leap motionbased virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural Regen Res 2017;12:1823.
- 43. Patel J, Fluet G, Qiu Q, et al. Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods poststroke: a feasibility study. J Neuroeng Rehabil 2019;16:92.
- 44. Mekbib DB, Debeli DK, Zhang L, et al. A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke. Ann N Y Acad Sci 2021;1493:75–89.
- 45. Mekbib DB, Zhao Z, Wang J, et al. Proactive motor functional recovery following immersive virtual reality—based limb mirroring therapy in patients with subacute stroke. Neurotherapeutics 2020;17:1919–30.
- **46.** Marin-Pardo O, Laine CM, Rennie M, Ito KL, Finley J, Liew S. A virtual reality Muscle–Computer interface for neurorehabilitation in chronic stroke: a pilot study. Sensors 2020;20:3754.
- Patel J, Anita Van Wingerden D, Yarossi M, Massood S. Virtual reality-augmented rehabilitation for patients in sub-acute phase poststroke: a feasibility study. J Pain Manag 2016;9:227.
- 48. Turolla A, Daud Albasini OA, Oboe R, et al. Haptic-based neurorehabilitation in poststroke patients: a feasibility prospective multicentre trial for robotics hand rehabilitation. Comput Math Methods Med 2013;2013:895492.
- **49.** Yarossi M, Patel J, Qiu Q, et al. The association between reorganization of bilateral m1 topography and function in response to early intensive hand focused upper limb rehabilitation following stroke is dependent on ipsilesional corticospinal tract integrity. Front Neurol 2019;10:258.
- Ekman U, Fordell H, Eriksson J, et al. Increase of frontal neuronal activity in chronic neglect after training in virtual reality. Acta Neurol Scand 2018;138:284–92.
- Wåhlin A, Fordell H, Ekman U, Lenfeldt N, Malm J. Rehabilitation in chronic spatial neglect strengthens resting-state connectivity. Acta Neurol Scand 2019;139:254–9.
- 52. De Luca R, Lo Buono V, Leo A, et al. Use of virtual reality in improving poststroke neglect: promising neuropsychological and neurophysiological findings from a case study. Appl Neuropsychol Adult 2019;26:96–100.
- 53. Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PF. Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair 2019;33:112–29.
- Mujber TS, Szecsi T, Hashmi MS. Virtual reality applications in manufacturing process simulation. J Mater Process Technol 2004;155:1834–8.
- Friston KJ. Functional and effective connectivity: a review. Brain Connect 2011;1:13–36.

- 56. Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF Machiel. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 2014;9(3):e93318.
- Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation-review. Appl Ergon 2018;69:153–61.
- Bailenson J, Patel K, Nielsen A, Bajscy R, Jung S, Kurillo G. The effect of interactivity on learning physical actions in virtual reality. Media Psychol 2008;11:354–76.
- 59. Subramanian S, Beaudoin C, Levin MF. In: Arm pointing movements in a three dimensional virtual environment: effect of two different viewing media. 2008 Virtual Rehabilitation. Vancouver, Canada: IEEE (Institute of Electrical and Electronics Engineers); 2008. p. 181–5.
- Crosbie JH, Lennon S, McNeill MD, McDonough SM. Virtual reality in the rehabilitation of the upper limb after stroke: the user's perspective. Cyberpsychol Behav 2006;9:137–41.
- **61.** Saposnik G, Cohen LG, Mamdani M, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 2016;15:1019–27.
- 62. Slobounov SM, Ray W, Johnson B, Slobounov E, Newell KM. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Int J Psychophysiol 2015;95:254– 60.
- Levin MF. Can virtual reality offer enriched environments for rehabilitation? Expert Rev Neurother 2011;11:153–5.
- Nithianantharajah J, Hannan AJ. Enriched environments, experiencedependent plasticity and disorders of the nervous system. Nat Rev Neurol 2006;7:697–709.
- 65. Dahlqvist P, Zhao L, Johansson I, et al. Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats. Neurosci 1999;93:527–35.
- 66. Komitova M, Mattsson B, Johansson BB, Eriksson PS. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 2005;36:1278–82.
- 67. Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J Cereb Blood Flow Metab 2002;22:852–60.
- Ohlsson A, Johansson BB. Environment influences functional outcome of cerebral infarction in rats. Stroke 1995;26:644–9.
- Risedal A, Mattsson B, Dahlqvist P, Nordborg C, Olsson T, Johansson BB. Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull 2002;58:315–21.
- **70.** Kim B, Winstein C. Can neurological biomarkers of brain impairment be used to predict poststroke motor recovery? A systematic review. Neurorehabil Neural Repair 2017;31:3–24.
- Buma FE, Lindeman E, Ramsey NF, Kwakkel G. Functional neuroimaging studies of early upper limb recovery after stroke: a systematic review of the literature. Neurorehabil Neural Repair 2010;24:589–608.
- Jang SH, Cho S, Kim Y, et al. Cortical activation changes associated with motor recovery in patients with precentral knob infarct. Neuroreport 2004;15:395–9.
- Richards LG, Stewart KC, Woodbury ML, Senesac C, Cauraugh JH. Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence. Neuropsychologia 2008;46:3–11.
- 74. Lüdemann-Podubecká J, Nowak DA. Mapping cortical hand motor representation using TMS: a method to assess brain plasticity and a surrogate marker for recovery of function after stroke? Neurosci Biobehav Rev 2016;69:239–51.
- Kimberley TJ, Khandekar G, Borich M. fMRI reliability in subjects with stroke. Exp Brain Res 2008;186:183–90.

- Schambra HM, Ogden RT, Martínez-Hernández I, et al. The reliability of repeated TMS measures in older adults and in patients with subacute and chronic stroke. Front Cell Neurosci 2015;9:335.
- Borich MR, Brown KE, Lakhani B, Boyd LA. Applications of electroencephalography to characterize brain activity: perspectives in stroke. J Neurol Phys Ther 2015;39:43–51.
- Sheorajpanday RV, Nagels G, Weeren AJ, van Putten MJ, De Deyn PP. Reproducibility and clinical relevance of quantitative EEG parameters in cerebral ischemia: a basic approach. Clinical Neurophysiol 2009;120:845–55.
- **79.** Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 2012;135:2277–89.
- Ruddy KL, Leemans A, Carson RG. Transcallosal connectivity of the human cortical motor network. Brain Struct Funct 2017;222:1243–52.
- Irlbacher K, Brocke J, Mechow JV, Brandt SA. Effects of GABAA and GABAB agonists on interhemispheric inhibition in man. Clin Neurophysiol 2007;118:308–16.
- Calautti C, Baron J. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 2003;34:1553–66.
- Arya KN, Pandian S, Verma R, Garg RK. Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodywork Movement Ther 2011;15:528–37.
- Liepert J, Bauder H, Miltner WH, Taub E, Weiller C. Treatmentinduced cortical reorganization after stroke in humans. Stroke 2000;31:1210–6.
- Carey JR, Kimberley TJ, Lewis SM, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125:773–88.
- Jang SH, Kim Y, Cho S, Chang Y, Lee ZI, Ha JS. Cortical reorganization associated with motor recovery in hemiparetic stroke patients. Neuroreport 2003;14:1305–10.
- Nomura EM, Gratton C, Visser RM, Kayser A, Perez F, D'Esposito M. Double dissociation of two cognitive control networks in patients with focal brain lesions. Proc Natl Acad Sci U S A 2010;107:12017–22.
- Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 2011;55:1147–58.
- Grefkes C, Nowak DA, Eickhoff SB, et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 2008;63:236–46.
- **90.** Zheng X, Sun L, Yin D, et al. The plasticity of intrinsic functional connectivity patterns associated with rehabilitation intervention in chronic stroke patients. Neuroradiology 2016;58:417–27.

- **91.** James GA, Lu Z, VanMeter JW, Sathian K, Hu XP, Butler AJ. Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top Stroke Rehabil 2009;16:270–81.
- Fan Y, Wu C, Liu H, Lin K, Wai Y, Chen Y. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front Hum Neurosci 2015;9:546.
- 93. Calautti C, Leroy F, Guincestre J, Baron J. Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 2001;32:2534–42.
- **94.** Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992;31:463–72.
- Jäncke L, Cheetham M, Baumgartner T. Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci 2009;3:6.
- **96.** Moro SB, Bisconti S, Muthalib M, et al. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Neuroimage 2014;85:451–60.
- **97.** Ferrari M, Bisconti S, Spezialetti M, et al. Prefrontal cortex activated bilaterally by a tilt board balance task: a functional near-infrared spectroscopy study in a semi-immersive virtual reality environment. Brain Topogr 2014;27:353–65.
- Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair 2010;24:404–12.
- **99.** Cameirão MS, i Badia SB, Oller ED, Verschure PF. Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabi 2010;7:48.
- 100. Holden MK, Dyar T. Virtual environment training-A new tool for neurorehabilitation? Neurology Report 2002;26:62–71.
- 101. Holper L, Muehlemann T, Scholkmann F, Eng K, Kiper D, Wolf M. Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). J Neuroeng Rehabil 2010;7:57.
- 102. Boyd LA, Hayward KS, Ward NS, et al. Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke 2017;12:480–93.