Effects of Virtual Reality versus Conventional Balance Training on Balance and Falls in People with Multiple Sclerosis: A Randomized Controlled Trial

Farshad Molhemi, PhD, Student of Physical Therapy, Saeideh Monjezi, PhD, Student of Physical Therapy, Mohammad Mehravar, MSc of Biomechanics, Mohammad-Jafar Shaterzadeh-Yazdi, PhD of Physical Therapy, Associate Professor, Reza Salehi, PhD of Physical Therapy, Associate Professor, Saeed Hesam, PhD of Biostatistics, Ehsan Mohammadianinejad, MD, Neurologist

PII: S0003-9993(20)31212-0

DOI: https://doi.org/10.1016/j.apmr.2020.09.395

Reference: YAPMR 58016

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 3 March 2020

Revised Date: 3 September 2020

Accepted Date: 26 September 2020

Please cite this article as: Molhemi F, Monjezi S, Mehravar M, Shaterzadeh-Yazdi M-J, Salehi R, Hesam S, Mohammadianinejad E, Effects of Virtual Reality versus Conventional Balance Training on Balance and Falls in People with Multiple Sclerosis: A Randomized Controlled Trial, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2020), doi: https://doi.org/10.1016/j.apmr.2020.09.395.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Congress of Rehabilitation Medicine

Running Head: Virtual Reality-Based Balance Training

Title: Effects of Virtual Reality versus Conventional Balance Training on Balance and Falls in People with Multiple Sclerosis: A Randomized Controlled Trial

1. Farshad Molhemi, PhD Student of Physical Therapy

Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

F.molhemi@yahoo.com

2. Saeideh Monjezi, PhD Student of Physical Therapy

Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Saeideh.monjezi@yahoo.com

3. Mohammad Mehravar, MSc of Biomechanics

Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

mohammad.mehravar@gmail.com

4. Mohammad-Jafar Shaterzadeh-Yazdi, PhD of Physical Therapy, Associate Professor Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Shaterzadeh.pt@gmail.com

5. Reza Salehi*, PhD of Physical Therapy, Associate Professor

Rehabilitation Research Center, Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran; Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Salehi.re@iums.ac.ir

6. Saeed Hesam, PhD of Biostatistics

Department of Biostatistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Saeed_hesam65@yahoo.com

7. Ehsan Mohammadianinejad, MD, Neurologist

Department of Neurology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Ehsanneuro@gmail.com

Keywords: virtual reality, exergame, balance, falls, multiple sclerosis **The name of the institution, where the study was performed**: Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Acknowledgements:

This study is part of the MSc thesis of the first author. Special thanks to Ahvaz Jundishapur University of Medical Sciences for financial support (Grant number: PHT-9617). Thanks to Dr Masoud Mazaheri for his valuable comments on the final text. Also, thanks to Khuzestan MS Patients' Society and PwMS participated in this study.

Author contributions:

All authors contributed to the study design. E. Mohammadiani Nejad referred the PwMS participants after checking for the inclusion and exclusion criteria. F.Molhemi and S.Monjezi contributed to data collection. M.Mehravar and S.Hesam contributed to data analysis. All authors contributed to data interpretation. F.Molhemi, S.Monjezi and M.Mehravar drafted the manuscript. All authors revised and approved the final manuscript.

Ethics Approval:

This study received approval from the local ethics committee "Ahvaz Jundishapur University of Medical Sciences" (approval number IR.AJUMS.REC.1396.558). Informed consent was obtained from all the participants.

Clinical Trial Registration:

This trial is registered at the Iranian Registry of Clinical Trials (Registration ID: IRCT2017110737286N1).

Conflicts of Interest:

The Authors declare that there is no conflict of interest.

*Corresponding Author:

Reza Salehi*, PhD of Physical Therapy, Associate Professor

Rehabilitation Research Center, Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran; Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Salehi.re@iums.ac.ir

1	Effects of Virtual Reality versus Conventional Balance Training on Balance and Falls in
2	People with Multiple Sclerosis: A Randomized Controlled Trial
3	<u>Abstract</u>
4	Objective: To assess the efficacy of Virtual Reality (VR)-based versus conventional balance
5	training on the improvement of balance and reduction of falls in people with multiple sclerosis
6	(PwMS).
7	Design: Single-blinded, randomized, controlled trial.
8	Setting: Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of
9	Medical Sciences.
10	Participants: Thirty-nine PwMS, randomized into VR (n=19) and control (n=20) groups.
11	Intervention: The VR group performed exergames using Kinect [®] while control group
12	accomplished conventional balance exercises. Both groups received 18 training sessions for 6
13	weeks.
14	Outcome Measures: Limits of stability(LOS), Timed Up-and-Go(TUG) and 10-Meter-Walk
15	tests with and without cognitive task and their dual-task costs(DTC), Berg Balance Scale,
16	Multiple Sclerosis Walking Scale-12, Fall Efficacy Scale-international, Activities-specific
17	Balance Confidence scale, and fall history were obtained pre- and post-intervention, and after a
18	three-month follow-up.
19 20	Results: At both post-intervention and follow-up, TUG ^{cognitive} and DTC on the TUG were significantly lower and the 10-Meter-Walk ^{cognitive} was significantly higher in the VR group. At
	was significantly inspect in the vice for the significantly inspect in the vice group. It

follow-up, reaction time and the number of falls demonstrated significant differences favoring 21

22	the VR group, whereas the directional control revealed significant difference in favor of the
23	control group(p <0.05). The other outcomes showed no statistically significant difference neither
24	at post-intervention nor at follow-up.
25	Conclusions: Both the VR-based and conventional balance exercises improved balance and
26	mobility in PwMS, while each acted better in improving certain aspects. VR-based training was
27	more efficacious in enhancing cognitive-motor function, and reducing falls, whereas
28	conventional exercises led to better directional control. Further studies are needed to confirm the
29	effectiveness of recruiting VR-based exercises in clinical settings.
30	
31	
32	Keywords: Virtual Reality, Exergame, Balance, Falls, Multiple Sclerosis
33	
34	Abbreviations:
35	Activities-specific Balance Confidence Scale (ABC)
36	Berg balance scale (BBS)
37	Directional Control (DCL)
38	Dual-Task Cost (DTC)
39	Endpoint Excursion (EPE)
40	Expanded Disability Status Scale (EDSS)
41	Fall Efficacy Scale-International (FES-I)

- 42 Generalized Linear Mixed-Model (GLMM)
- International Classification of Functioning, Disability and Health (ICF) 43
- KWiC (Kinecting with Clinicians) 44
- Limits of stability (LOS) 45
- Linear Mixed-Model (LMM) 46
- Maximum Excursion (MXE) 47
- Movement Velocity (MVL) 48
- 49 Multiple Sclerosis (MS)
- erproó Multiple Sclerosis Walking Scale-12 (MSWS-12) 50
- People with Multiple Sclerosis (PwMS) 51
- Reaction Time (ReT) 52
- Suitability Evaluation Questionnaire (SEQ) 53
- The 10-Meter-Walk (10MW) 54
- 55 Timed Up-and-Go (TUG)
- Virtual Reality (VR) 56
- 57
- 58
- 59

60 1. Introduction:

- 61
- 62

Balance impairment is one of the most disabling symptoms in people with multiple
sclerosis (PwMS) that affects about 75% of patients during the course of the disease.¹ Impaired
balance and mobility restrict the ability to perform activities of daily living which may result in a
reduced quality of life.² These impairments are known as major risk factors for falls with more
than 50% of PwMS reporting one fall or more over a 3 to 12-month period.³⁻⁵

68

A variety of approaches including motor and sensory strategies⁶, strengthening 69 exercises⁷, and dual-task cognitive-balance exercises⁸ have been employed to improve balance 70 and decrease the risk of falling in PwMS. However, recent systematic reviews revealed that despite 71 the efficacy of the conventional methods in improving balance of PwMS, these improvements are 72 not sufficient enough to reduce the number of future falls.^{2,9} Due to the chronic nature of the 73 disease, rehabilitation of PwMS, especially when aimed at decreasing major consequences such 74 as falling, is a long-term process.^{10,11} The constant repetitive nature of conventional rehabilitation 75 programs may decrease patient engagement in the long-term.^{10,12} Therefore, patients' 76 commitment and their motivation need to be preserved throughout the course of the program.¹⁰ 77 This may raise the need for more effective and enjoyable rehabilitation programs to gain durable 78 clinical improvements.¹² 79

81 In recent years, the use of Virtual Reality (VR) and exergames (video-games that require bodily movements to play; simulating an active gaming experience used as a form of exercise¹³) 82 has received attention in neuro-rehabilitation literature. Although various studies have repeatedly 83 demonstrated that VR exercises are motivational and enjoyable^{14–16}, evidence supporting the 84 higher efficacy of VR-based training compared to conventional rehabilitation is scarce and 85 inconsistent. A recent meta-analysis indicated that VR was at least as effective as conventional 86 87 balance exercises in improving balance and reducing gait impairments in PwMS with no significant difference between the two types of training.¹⁶ Even though other studies have shown 88 the promising potential of VR to improve balance and gait in neurological conditions, such as 89 Multiple Sclerosis (MS),¹⁷ the small number of studies with matched groups in terms of training 90 parameters (e.g., duration of exercise in each treatment session, structure, and nature of the 91 program), and the lack of follow-up make it hard to achieve a certain conclusion.¹⁶ 92

93

Therefore, the present study was proposed with two aims: (1) to determine if a VR-based balance training program designed according to the principals of motor learning could be more efficacious towards improving balance and mobility compared with matched conventional exercises; (2) to compare the success of these two rehabilitation programs for reducing the risk for future falls in a three-month follow-up. We hypothesized that compared to conventional training, balance improvement would be greater and last longer, and the number of future falls would decrease more when employing a VR-based balance training program.

101

102 2. Methods

103 2.1. Participants and Design

104

105

106	This study is a prospective randomized controlled trial, with parallel groups, conducted at
107	Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical
108	Sciences, Ahvaz, Iran, from December 2017 to November 2018. The trial was directed based on
109	the CONSORT statement. ¹⁸ PwMS were recruited from Khuzestan MS Patients' Society based
110	on the following inclusion criteria: confirmed diagnosis of relapsing-remitting or secondary-
111	progressive MS according to the McDonald criteria ^{19,20} by a neurologist specialized in treating
112	MS, aged 18-64 years, Expanded Disability Status Scale (EDSS) below 6, and Berg Balance
113	Scale (BBS) lower than 53. Participants were excluded if they had exacerbation of symptoms in
114	past 3 months, cognitive impairment determined by Mini-Mental state examination below 24,
115	any neurologic or musculoskeletal diagnosis except MS that negatively affected their gait and
116	balance, uncorrected visual or auditory impairments or pregnancy. All the participants signed an
117	informed consent form prior to the participation.
118	
119	This study was approved by the university ethics committee (Code:
120	IR.AJUMS.REC.1396.558) and was registered in the Iranian Registry of Clinical Trials

121 (Registration ID: IRCT2017110737286N1).

122

123 2.2. Randomization

1	2	Λ
-	- ~	+

125

144

126	After the pre-intervention assessments, participants were randomized into either VR-
127	based or conventional balance training groups. Random assignment to training arms was
128	stratified by age and sex to ensure similar representation of these variables. A statistician who
129	was not a member of the research team, prepared a computerized random allocation sequence
130	with different block sizes. Sealed envelopes opened by a third-party not involved in the study,
131	were used to achieve the allocation concealment.
132	
133	2.3. Interventions
134	
135	
136	Participants in both groups received three main categories of exercise including standing,
137	walking, and weight-shifting. In the control group, standing exercise included multidirectional
138	stepping, and single and double-leg standing, walking exercise involved forward, backward, and
139	side walking and weight-shifting exercise consisted of lunge, half-squat, leaning, and reaching.
140	In the VR group, progressive balance exercises were employed using the Xbox360 with
141	Microsoft's Kinect ^{® b} . "Light Race", "Stack'em up", and "20,000 leaks" exergames were
142	selected and matched to conventional exercises in each category (Table 2). When searching
143	among available exergames, KWiC resource (Kinecting with clinicians) was also considered. ²¹

The KWiC takes into account specifications like stability, mobility, spatial accuracy, cognitive

operations, augmented feedback, and scoring when selecting exergames for rehabilitation

145

165

146	purposes ²¹ (Details of VR-based rehabilitation protocol are presented in supplementary File).
147	
148	Each session composed of 5-minute warm-up (4-minute side-stepping plus 1-minute half-
149	squatting) followed by 30-minute exercise (10-minute active exercise per category). Participants
150	in both groups received 18 treatment sessions, 3 times per week for 6 consecutive weeks which
151	were supervised by the same physical therapist, blinded to the assessment results. Progression of
152	exercises was specifically planned according to each individual's performance (Figure 1a). VR
153	exercises were planned to be random-block based on the motor learning principals, and internally
154	variable ²² (Gentil's taxonomy of tasks; Figure 1b). To prevent fatigue, participants were allowed
155	to have 5-minute rest between the main exercise categories or to have enough rest during each
156	category upon request. When patients asked for a rest, exercises were stopped (exergames were
157	paused) and then resumed after adequate rest so that pure exercise duration was the same for
158	both groups.
159	
160	2.4. Outcome measures
161	
162	
163	To have a comprehensive assessment of patient's health, various outcome measures were
164	chosen to documents changes of balance and fall risk at different levels of International

Classification of Functioning, Disability and Health (ICF) including body structure and function,

activity and participantion.^{23,24} The description of these measures and their corresponding ICF
category are presented in Table 1.

168

The primary outcomes included limits of stability (LOS), single- and dual-task Timed 169 Up-and-Go (TUG), single- and dual-task 10-Meter-Walk (10MW) tests, Dual Task Costs (DTC), 170 BBS, Multiple Sclerosis Walking Scale-12 (MSWS-12), Fall Efficacy Scale-international (FES-171 I), Activities-specific Balance Confidence scale (ABC). The above-mentioned outcomes are 172 reliable, valid and responsive measures of balance in PwMS²⁵⁻³⁰ and were evaluated at baseline, 173 post-intervention, and after three-month follow-up. Self-reported number of falls during past 174 three months were recorded at baseline. Also, fall history during the intervention and three-175 month follow-up were determined using fall diary. Falls were defined as any unexpected event 176 that results in loss of balance and landing on the floor or ground or lower level ³¹. In line with the 177 previous studies, participants were classified as fallers if they had reported one or more falls 178 during the 3-month period.^{31,32} In addition to measurement of the primary outcomes, Suitability 179 Evaluation Questionnaire (SEQ) was given to the VR group after the last training session to 180 receive subjective feedback about the intervention.^{17,33} 181

182

183 Demographic information including age, sex, height, weight, MS subtype, duration of the 184 disease, years of education, level of disability, cognitive impairment and history of falls during 185 past 3 months were also recorded.

187	All participants were evaluated under similar conditions by a physical therapist with 6
188	years of experience in assessment and treatment of PwMS who was blinded to the group
189	allocation. The order of administering the tests was randomized to avoid learning effect and
190	fatigue. Adequate rest (2-5 minutes) was also given to participants between the tests.
191	
192	2.5. Sample size
193	
194	
195	Sample size was estimated based on the effect size (0.9) of the TUG ^{cognitive} , with alpha
196	and power set at 0.05 and 80%, respectively. This proposed a sample size of at least 16 in each
197	group to detect significant differences between the groups.
198	
199	2.6. Statistical analysis
200	
201	
202	Data analysis was performed using IBM SPSS statistics 22.0 software ^c . The normal
203	distribution was examined using Shapiro-Wilk test and Q-Q plot. Descriptive statistics were
204	calculated for the demographic data. Student's t-test was used to compare baseline demographic
205	and clinical characteristics between the groups. To separate two main sources of variance i.e.
206	within-subject and between-subject variances, mixed-model analysis was recruited. ³⁴ Linear
207	mixed-model (LMM) was used to assess main effect of time and group on continuous
208	quantitative variables. Negative binominal generalized linear mixed-model (GLMM), and

209	logistic GLMM were used to evaluate number of falls and fall occurrence binary variable
210	(faller/non-faller), respectively. Time, group, and their interaction were considered as fixed-
211	effects. Also, the subject was included as random-effect in order to consider the interdependency
212	of data during repeated measurements. The model was adjusted for age, sex, duration of disease,
213	MS subtype, and EDSS. Pre-intervention values were included as co-variate to increase
214	statistical power by considering interpersonal variations. ³⁵ Since the normality of response
215	variable is an essential assumption for LMM, when normal distribution was not confirmed,
216	square-root, logarithmic, or inverse transformation were applied. An intention-to-treat analysis
217	using last observation carried forward approach was conducted. ³⁶ Effect size for change in each
218	group was calculated using Cohen's d coefficient (mean differences/SD of the differences). ³⁶
219	Magnitude of the effect sizes was classified as small (0.20-0.49), moderate (0.50-0.80), and
220	large (>0.8). The significance level was set at 0.05.
221	
222	3. Results
223	
224	

224

225 Thirty-nine PwMS participated in this study. During the intervention period three 226 participants from control group and one participant from VR group dropped out of the study due to their work schedules (n=2) and transport problems (n=2). Finally, 35 participants completed 227 the post-intervention assessment (see Figure 2 illustrating flow chart of study process). 228 Compliance to the VR-based training was 98% (mean 17.58 of 18 possible sessions, min 10; 229

230	max 18) and to the conventional training was 93% (mean 16.80 of 18 possible sessions, min 6;
231	max 18).
232	
233	No significant adverse events were reported in either group. The mean score of the SEQ
234	for the used VR system was 57.81±5.39 from a total of 65. None of the participants reported
235	dizziness, nausea, or discomfort.
236	
237	Pre-intervention, there were no statistically significant differences in demographic and
238	clinical characteristics between the groups (Table 3). Results of between and within-group
239	analysis and effect sizes are presented in Table 4.
240	
241	At the level of body structure and function, LOS measures showed no significant
242	differences post-intervention. At the follow-up, ReT was significantly lower in the VR group and
243	DCL was significantly higher in the control group. MVL, EPE, MXE showed no significant
244	differences.
245	
246	At the level of activity, at both post-intervention and follow-up, TUG ^{cognitive} and the DTC
247	on TUG were significantly lower, and 10MW ^{cognitive} was significantly higher in the VR group.
248	BBS, TUG, 10MW, DTC of 10MW and MSWS-12 showed no significant differences.
249	

250	At the participation level, at the follow-up, number of falls was significantly lower in the
251	VR group (Table 5). ABC, FES-I, and number of fallers (Table 6) showed no significance
252	differences between the groups at both post-intervention and follow-up.
253	
254	4. Discussion
255	
256	
257	The results of this study demonstrated that both VR-based and conventional balance
258	training improved balance-confidence, fear of falling, perceived ability to walk, functional
259	balance, and single-task walking speed. VR-based training was more efficacious in improving
260	reaction time, cognitive-motor performance, and reducing number of future falls, while
261	conventional exercises resulted in better directional control.
262	
263	LOS measures
264	Conventional and VR-based trainings improved different aspects of leaning function. In
265	the follow-up assessment, there was significant difference in ReT favoring the VR group, and in
266	DCL favoring the control group. Exercise attributes might be a possible cause for these findings.
267	In the VR group the movement velocity was externally imposed and participants had to react as
268	fast as possible to successfully complete the tasks, while the control group performed the
269	exercises at a self-selected pace that enables them to have more control on their movements. This

- may highlight the potential of two interventions to be used as complementary treatments. Furtherstudies with appropriate design are needed to validate this.
- 272

273 Cognitive-motor performance

Compared to conventional trainings, VR-based exercises were more efficacious in 274 improving cognitive-motor performance. Moreover, retention of improvements was observed 275 just in the VR group. Better cognitive-motor performance in the VR group could be the result of 276 the cognitive-motor challenges provided by VR exercises¹⁰. Rewarding tasks combining both 277 motor and cognitive demands, like those used in the VR-based training of the present study, 278 could lead to activation of both motor and cognitive pathways.¹⁰.Also, the virtual environment 279 itself imposes a cognitive load that demands attention, planning and dual tasking.³⁵ For example, 280 a meta-analysis by Stanmore et al. reported that VR improves cognitive functions in the elderly 281 and patients with schizophrenia and Parkinson's disease.³⁷ Exergames performed in virtual 282 environment, could trigger mechanisms of motivation¹⁰, increase the awareness of the problem 283 that patients have (meta-cognition) and the progress that they make through providing real-time 284 multisensory feedback¹⁰ and facilitating motor learning process.³⁸ The positive feedback that 285 patients received may have decreased avoiding real life demanding cognitive-motor tasks. 286 Previous studies expressed that VR-based interventions can retain and transfer the treatment 287 outcomes to everyday life¹⁰. Experiencing more cognitive-motor demanding situations could be 288 the reason for retention of cognitive-motor performance improvement in the VR group. 289 290

291 Fall prevention

292	The number of falls, at three-month follow-up compared to pre-intervention, was
293	significantly less in the VR group compared to the control group. Actually, regarding within
294	group analysis, VR-based exercises reduced the number of falls, while conventional training did
295	not. This will positively influence health economics with a reduction in high medical costs and
296	more importantly may influence morbidity and mortality from falls. ³¹ Despite the clinical
297	relevance and significance, these results should be interpreted with caution owing to the
298	relatively small sample size.

299

The number of fallers, at three-month follow-up compared to pre-intervention, decreased 300 in both groups; the odds of being labeled as a faller became 11.18 times less for the VR, and 4.29 301 times less for the control group. Despite the statistical insignificance of between-group 302 difference, the chance of experiencing falls in the control group was more than the VR group 303 (Table 6) which may clinically be important. Whereas surveying the causative relationship 304 between the obtained performance measures and fall risk was not in the scope of the present 305 study, other studies mentioned the significant advantage of VR-based training in reducing the fall 306 rate among older adults and people with Parkinson's disease.³⁵ According to Mirelman et al, the 307 cognitive-motor nature of VR-based exercises performing in an environment requiring attention, 308 concentration, motor planning, and problem-solving, could implicitly enhance fall-prevention 309 strategies and improve functional performance during daily challenging and attention demanding 310 situations, which reduces falling in real-life.³⁵ 311

312

313 Suitability of the VR exercises

314 SEQ scores of the VR group demonstrated that participants expressed having immense 315 fun and success in using the system and felt that it was useful, motivating, and positively affected 316 their rehabilitation. Interestingly, most participants expressed desire to continue treatment with 317 the used program.

318

319 4.1. Study Limitations

320

321

Although post-intervention and follow-up fall data were collected prospectively using fall 322 diaries, the pre-intervention falls were recorded retrospectively which may have been subjected 323 to recall bias.³⁹ To reduce this bias, family members of subjects were interviewed to confirm 324 their estimation. Also, concerning the nature of VR-based training, blinding of participants was 325 not possible which could be considered as another limitation. It is recommended that future 326 studies use subjective scales such as Borg rating of perceived exertion to ensure matching 327 exercise intensity between the groups, recruit more participants, and consider longer follow-up 328 with prospectively collected baseline fall data to increase generalizability of findings. VR-based 329 330 exercises in the present study were applied in a research setting under the supervision of a physiotherapist. Practicality of VR-based rehabilitation will be prominent if future studies 331 confirm that home-based VR exercises could gain the same results as their supervised versions. 332

333

334 5. Conclusions

336

337		Both the VR-based and conventional balance exercises improved balance and mobility in
338	PwM	IS, while each acted better in improving certain aspects. VR-based balance training was
339	more	efficacious in enhancing cognitive-motor function, and reducing falls, whereas
340	conv	entional exercises led to better directional control. Further studied are needed to confirm the
341	effec	tiveness of recruiting VR-based exercises in clinical settings.
342		
343		
344	Refe	rences:
345	1.	Findling O, Sellner J, Meier N, et al. Trunk sway in mildly disabled multiple sclerosis
346		patients with and without balance impairment. Exp Brain Res. 2011;213(4):363-370.
347		doi:10.1007/s00221-011-2795-8
348	2.	Gunn H, Markevics S, Haas B, Marsden J, Freeman J. Systematic Review: The

349 Effectiveness of Interventions to Reduce Falls and Improve Balance in Adults with

350 Multiple Sclerosis. *Arch Phys Med Rehabil*. 2015;96(10):1898-1912.

doi:10.1016/j.apmr.2015.05.018

352 3. Gunn HJ, Newell P, Haas B, Marsden JF, Freeman JA. Identification of Risk Factors for

Falls in Multiple Sclerosis: A Systematic Review and Meta-Analysis. *Phys Ther.*

354 2013;93(4):504-513. doi:10.2522/ptj.20120231

Giannì C, Prosperini L, Jonsdottir J, Cattaneo D. A systematic review of factors associated
with accidental falls in people with multiple sclerosis: A meta-analytic approach. *Clin*

557 Reflate $2014.20(7).704-710.001.10.1177/020921331331737$	357	Rehabil. 2014;28(7):704-716. doi:10.1177/026921551351757	5
--	-----	--	---

- 5. Hoang PD, Cameron MH, Gandevia SC, Lord SR. Neuropsychological, balance, and
- 359 mobility risk factors for falls in people with multiple sclerosis: A prospective cohort study.
- 360 Arch Phys Med Rehabil. 2014;95(3):480-486. doi:10.1016/j.apmr.2013.09.017
- 361 6. Cattaneo D, Jonsdottir J, Zocchi M, Regola A. Effects of balance exercises on people with
 362 multiple sclerosis: A pilot study. *Clin Rehabil*. 2007;21(9):771-781.
- 363 doi:10.1177/0269215507077602
- 364 7. DeBolt LS, McCubbin JA. The Effects of Home-Based Resistance Exercise on Balance,
- 365 Power, and Mobility in Adults with Multiple Sclerosis. *Arch Phys Med Rehabil*.

366 2004;85(2):290-297. doi:10.1016/j.apmr.2003.06.003

- 8. Monjezi S, Negahban H, Tajali S, Yadollahpour N, Majdinasab N. Effects of dual-task
- 368 balance training on postural performance in patients with Multiple Sclerosis: A double-
- blind, randomized controlled pilot trial. *Clin Rehabil*. 2017;31(2):234-241.
- doi:10.1177/0269215516639735
- 9. Hayes S, Galvin R, Kennedy C, et al. Interventions for preventing falls in people with

372 multiple sclerosis. *Cochrane Database Syst Rev.* 2019;2019(11).

- 373 doi:10.1002/14651858.CD012475.pub2
- 10. Perez-Marcos D, Bieler-Aeschlimann M, Serino A. Virtual reality as a vehicle to
- empower motor-cognitive neurorehabilitation. *Front Psychol*. 2018;9(OCT):1-8.
- doi:10.3389/fpsyg.2018.02120
- 11. Khalil H, Al-Shorman A, El-Salem K, et al. The development and pilot evaluation of

378		virtual reality balance scenarios in people with multiple sclerosis (ms): A feasibility study.
379		NeuroRehabilitation. 2018;Preprint(Preprint):1-10. doi:10.3233/NRE-182471
380	12.	Lozano-Quilis J-A, Gil-Gómez H, Gil-Gómez J-A, et al. Virtual Rehabilitation for
381		Multiple Sclerosis Using a Kinect-Based System: Randomized Controlled Trial. JMIR
382		Serious Games. 2014;2(2):e12. doi:10.2196/games.2933
383	13.	Benzing V, Schmidt M. Exergaming for Children and Adolescents: Strengths,
384		Weaknesses, Opportunities and Threats. J Clin Med. 2018;7(11):422.
385		doi:10.3390/jcm7110422
386	14.	Howard MC. A meta-analysis and systematic literature review of virtual reality
387		rehabilitation programs. Comput Human Behav. 2017;70:317-327.
388		doi:10.1016/j.chb.2017.01.013
389	15.	Choi SD, Guo L, Kang D, Xiong S. Exergame technology and interactive interventions for
390		elderly fall prevention: A systematic literature review. Appl Ergon. 2017;65:570-581.
391		doi:10.1016/j.apergo.2016.10.013
392	16.	Casuso-Holgado MJ, Martín-Valero R, Carazo AF, Medrano-Sánchez EM, Cortés-Vega
393		MD, Montero-Bancalero FJ. Effectiveness of virtual reality training for balance and gait
394		rehabilitation in people with multiple sclerosis: a systematic review and meta-analysis.
395		Clin Rehabil. 2018;32(9):1220-1234. doi:10.1177/0269215518768084
396	17.	Cano Porras D, Siemonsma P, Inzelberg R, Zeilig G, Plotnik M. Advantages of virtual
397		reality in the rehabilitation of balance and gait: Systematic review. Neurology.
398		2018;90(22):1017-1025. doi:10.1212/WNL.000000000005603

399 18. Schulz KF, Altman DG, Moher D, et al. CONSORT 2010 statement: Updated

400 for reporting parallel group randomised trials (Chinese version). *J Chinese Integr Med.*

401 2010;8(7):604-612. doi:10.3736/jcim20100702

- 402 19. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple
- 403 sclerosis: The 2013 revisions. *Neurology*. 2014;83(3):278-286.

404 doi:10.1212/WNL.000000000000560

405 20. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017

406 revisions of the McDonald criteria. *Lancet Neurol*. 2018;17(2):162-173.

- 407 doi:10.1016/S1474-4422(17)30470-2
- Levac D, Espy D, Fox E, Pradhan S, Deutsch JE. "Kinect-ing" With Clinicians: A
 Knowledge Translation Resource to Support Decision Making About Video Game Use in
 Rehabilitation Danielle. *Phys Ther.* 2015;95(3):426-440.
- 411 22. Kisner C, Colby LA. *Therapeutic Exercise: Foundations and Techniques*. 6th ed. F.A.
 412 Davis, 2012; 2012.
- 413 23. Potter K, Cohen ET, Allen DD, et al. Outcome Measures for Individuals With Multiple
- 414 Sclerosis: Recommendations From the American Physical Therapy Association
- 415 Neurology Section Task Force. *Phys Ther*. 2014;94(5):593-608. doi:10.2522/ptj.20130149
- 416 24. Cameron MH, Nilsagård YE. Measurement and treatment of imbalance and fall risk in
- 417 multiple sclerosis using the international classification of functioning, disability and health
- 418 model. *Phys Med Rehabil Clin N Am.* 2013;24(2):337-354. doi:10.1016/j.pmr.2012.11.009
- 419 25. Monjezi S, Negahban H, Tajali S, Mofateh R, Molhemi F, Mostafaee N. Psychometric

420		properties of the Persian-version of the Activities-specific Balance Confidence scale and
421		Fall Efficacy Scale-International in Iranian patients with multiple sclerosis. Physiother
422		Theory Pract. 2019;00(00):1-10. doi:10.1080/09593985.2019.1658247
423	26.	Negahban H, Monjezi S, Mehravar M, Mostafaee N, Shoeibi A. Responsiveness of
424		postural performance measures following balance rehabilitation in multiple sclerosis
425		patients. J Bodyw Mov Ther. 2017;22:458. doi:10.1016/j.jbmt.2017.06.008
426	27.	Cattaneo D, Jonsdottir J, Repetti S. Reliability of four scales on balance disorders in
427		persons with multiple sclerosis. Disabil Rehabil. 2007;29(24):1920-1925.
428		doi:10.1080/09638280701191859
429	28.	Cattaneo D, Regola A, Meotti M. Validity of six balance disorders scales in persons with
430		multiple sclerosis. Disabil Rehabil. 2006;28(12):789-795.
431		doi:10.1080/09638280500404289
431 432	29.	doi:10.1080/09638280500404289 Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical
	29.	
432	29.	Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical
432 433	29. 30.	Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. <i>Int J Rehabil Res</i> .
432 433 434		Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. <i>Int J Rehabil Res.</i> 2012;35(1):69-74. doi:10.1097/MRR.0b013e328350b65f
432 433 434 435		Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. <i>Int J Rehabil Res.</i> 2012;35(1):69-74. doi:10.1097/MRR.0b013e328350b65f Nakhostin Ansari N, Naghdi S, Mohammadi R, Hasson S. Multiple Sclerosis Walking
432 433 434 435 436		Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. <i>Int J Rehabil Res.</i> 2012;35(1):69-74. doi:10.1097/MRR.0b013e328350b65f Nakhostin Ansari N, Naghdi S, Mohammadi R, Hasson S. Multiple Sclerosis Walking Scale-12, translation, adaptation and validation for the Persian language population. <i>Gait</i>
432 433 434 435 436 437	30.	Learmonth YC, Paul L, McFadyen AK, Mattison P, Miller L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. <i>Int J Rehabil Res.</i> 2012;35(1):69-74. doi:10.1097/MRR.0b013e328350b65f Nakhostin Ansari N, Naghdi S, Mohammadi R, Hasson S. Multiple Sclerosis Walking Scale-12, translation, adaptation and validation for the Persian language population. <i>Gait</i> <i>Posture</i> . 2015;41(2):420-424. doi:10.1016/j.gaitpost.2014.11.003

441	32.	Nilsagård Y, Lundholm C, Denison E, Gunnarsson LG. Predicting accidental falls in
442		people with multiple sclerosis - A longitudinal study. Clin Rehabil. 2009;23(3):259-269.
443		doi:10.1177/0269215508095087
444	33.	Gil-Gomez JA, Gil-Gomez H, Lozano-Quilis JA, Manzano-Hernandez P, Albiol-Perez S,
445		Aula-Valero C. SEQ: Suitability Evaluation Questionnaire for Virtual Rehabilitation
446		systems. Application in a Virtual Rehabilitation system for Balance Rehabilitation. Proc
447		2013 7th Int Conf Pervasive Comput Technol Healthc Work PervasiveHealth 2013.
448		2013:335-338. doi:10.4108/icst.pervasivehealth.2013.252216
449	34.	Van Dongen HPA, Olofsen E, Dinges DF, Maislin G. Mixed-Model Regression Analysis
450		and Dealing with Interindividual Differences. Methods Enzymol. 2004;384(1998):139-
451		171. doi:10.1016/S0076-6879(04)84010-2
452	35.	Mirelman A, Rochester L, Maidan I, et al. Addition of a non-immersive virtual reality
453		component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised
454		controlled trial. Lancet. 2016;388(10050):1170-1182. doi:10.1016/S0140-6736(16)31325-
455		3

- 456 36. Carling A, Forsberg A, Gunnarsson M, Nilsagård Y. CoDuSe group exercise programme
 457 improves balance and reduces falls in people with multiple sclerosis: A multi-centre,
- 458 randomized, controlled pilot study. *Mult Scler*. 2017;23(10):1394-1404.
- doi:10.1177/1352458516677591
- 37. Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effect of active video
 games on cognitive functioning in clinical and non-clinical populations: A meta-analysis
 of randomized controlled trials. *Neurosci Biobehav Rev.* 2017;78:34-43.

463		doi:10.1016/j.neubiorev.2017.04.011
464	38.	Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb
465		rehabilitation: incorporation of motor control and motor learning principles. Phys Ther.
466		2015;95(3):415-425. doi:10.2522/ptj.20130579
467	39.	Ganz DA, Higashi T, Rubenstein LZ. Monitoring falls in cohort studies of community-
468		dwelling older people: Effect of the recall interval. J Am Geriatr Soc. 2005;53(12):2190-
469		2194. doi:10.1111/j.1532-5415.2005.00509.x
470		
471		
472	Supp	oliers:
473		
474		
475	a.	Long platform; Smart EquiTest CRS [®] NeuroCom [®] International, Clackamas, Oregon,
476		USA
477	b	Microsoft's Kinect; Microsoft Inc, Redmond, Washington
478	c.	IBM SPSS statistics software (Version 22.0 for Windows); IBM Corp.
479		
480	Lege	nds of figures and tables:
481		
482		

- 483 Figure 1: Progression of exercises. A) Each exergame had 3 mode of difficulty (Simple,
- 484 moderate and difficult). B) Designed VR training representation into Gentile's taxonomy.
- 485 Exercises applied using light Race and Stack'em up had internal variability. Exercises applied
- 486 using 20,000 Leaks had no internal variability.
- 487 Figure 2. CONSORT flow diagram
- 488 Table 1. Outcome measures for balance and falls assessment
- Table 2. Types of conventional exercises and their corresponding exergames in each trainingcategory
- 491 Table 3. Demographic and clinical characteristics of virtual reality and control groups (n=39)
- 492 Table 4. Intention-to-treat analysis of within-group and between-group changes (n=39)
- 493 Table 5. Within-group and between-group changes in number of falls (n=39)
- 494 Table 6. Within-group and between-group changes in number of fallers (n=39)
- 495

Category	Conventional Exercise	Corresponding Exergame		
Standing	Multidirectional stepping	• Light Race		
Standing	• Single and double leg standing	• Stack'em up		
Walking	• Walking in different directions	Stack'em up20,000 Leaks		
Weight shifting	• Lunge, half-squat, leaning, and reaching	 20,000 Leaks Stack'em up		

Table 2. Types of conventional exercises and their corresponding exergames in each training category

	VR (n = 19)	Control (n = 20)	<i>P</i> -value
Demographic data			
Age (y)	36.8 (8.4)	41.6 (8.4)	0.08
Gender (n)			
Male	7	8	-
Female	12	12	-
Height (cm)	164.7 (8.8)	167.6 (10.7)	0.37
BMI (kg/m ²)	26.2 (4.9)	25.3 (3.9)	0.54
Education (y)	13.9 (2.7)	12.9 (3.7)	0.66
Clinical data		6	
Type of MS (n)	0		
RRMS	14	16	-
SPMS	5	4	-
Duration of disease (y)	7.7 (3.6)	11.2 (6.8)	0.06
Participants with history of falls in past 3 months (n, %)	15 (78.9)	12 (60)	0.30
Falls (n)	177	63	0.09
MMSE ^a (score)	28.7 (1.4)	28.0 (1.3)	0.09
EDSS ^b (score)	4.8 (0.9)	4.7 (1.1)	0.84

Table 3. Demographic and clinical characteristics of virtual reality and control groups (n=39)

Values are means \pm SD unless otherwise stated.

VR: Virtual Reality; BMI: Body mass index; MS: Multiple Sclerosis; RRMS: Relapsing Remitting MS; SPMS: Secondary Progressive MS; MMSE: Mini-Mental State Examination; EDSS: Expanded Disability Status Scale.

^a Score range: 0-30

^b Score range: 0-10

Table 1: Outcome measures for balance and falls assessment

Outcome Measure	ICF Category	Details
Limits of stability (LOS)	Body Structure / Function	LOS was assessed using a static long platform. ^a In the LOS, reaction time (ReT), movement velocity (MVL), endpoint excursion (EPE), maximum excursion (MXE), and directional control (DCL), all averaged for leaning in 8 different directions, were calculated.
Berg Balance Scale (BBS)	Activity	Performance of the participants in 14 balance related tasks was scored by assessor on a scale of 0 (cannot perform) to 4 (normal performance).
Timed Up-and-Go (TUG)	Activity	TUG assesses dynamic balance and mobility. Time to rise from a chair, walk 3 meters, turn, walk back, and sit down, as fast as possible was recorded. To evaluate dual-task performance, TUG was repeated with concurrent backward counting by 7 from a randomized number between 100 and 200 (TUG ^{cognitive}).
10-Meter-Walk (10MW)	Activity	10MW assess walking speed. Participants walked 10 meters at their self-selected comfortable speed and the time to complete the middle 6 meters was recorded. To measure dual-task performance, 10MW was repeated with concurrent backward counting by 7 from a randomized number between 100 and 200 (10MW ^{cognitive}).
Dual-Task Cost (DTC)	Activity	DTC defines as the percentage of the change in outcome measure (e.g. the duration of the TUG and the speed of the 10MW) after adding concurrent cognitive task. Values closer to zero correspond to lower cognitive-motor interference. DTC = 100*(single task - dual task)/ single task
Multiple Sclerosis Walking Scale-12 (MSWS-12)	Activity	In the MSWS-12, participants rate their perceived ability of walking during 12 different conditions in a scale of 1 (no limitation) to 5 (very limited).
Fall Efficacy Scale- International (FES-I)	Activity Participation	In the FES-I, participants rate the level of concern relating to falls during 16 activities of daily living (including social activities that may contribute to quality of life) from 1 (not at all concerned) to 4 (very concerned).
Activities-specific Balance Confidence Scale (ABC)	Activity Participation	ABC, is a 16-items patient-reported measure of balance confidence. For each item, participants rate their balance confidence between 0% (no confidence) to 100% (complete confidence).
Falls	Participation	Participants were asked to prospectively record details of falls (including date and time, location, activities in which fall occurred, levels of fatigue and hurry, and any possible injuries) in a standardized paper fall diary during the intervention and over a 3- month period after the intervention.

ICF: International Classification of Functioning, Disability and Health. In the TUG, TUG^{cognitive}, 10MW, and 10MW^{cognitive} average performance in two trials was used for statistical analysis. Persian versions of the MSWS-12, FES-I, and ABC were used.

	Pre-	Post-	Follow up	P-value for ch	0,	<i>P</i> -value for	difference [†]
Variable	intervention Mean (SD)	intervention Mean (SD)	Mean (SD)	Pre to post intervention	Pre- intervention to follow up	Post intervention	Follow up
ReT (s)							
VR	1.0 (0.3)	0.9 (0.2)	0.8 (0.2)	0.58; -0.74	0.006; -0.86	0.25	0.01
Control	0.9 (0.2)	0.9 (0.3)	0.9 (0.3)	0.94; -0.03	0.67; 0.05		
MVL (deg/s)							
VR	2.7 (1.7)	3.6 (1.7)	3.6 (1.5)	0.003; 1.18	0.001; 0.97	0.50	0.11
Control	2.8 (1.3)	3.2 (1.3)	2.9 (0.9)	0.08; 0.46	0.27; 0.07		
EPE (%)							
VR	47.8 (11.2)	58.3 (10.2)	58.9 (10.7)	0.001; 1.06	0.001; 1.05	0.46	0.12
Control	47.7 (11.9)	53.8 (16.6)	51.9 (12.9)	0.03; 0.63	0.13; 0.48		
MXE (%)							
VR	61.5 (10.9)	69.6 (9.8)	68.8 (10.5)	< 0.001; 1.19	0.01; 0.76	0.36	0.17
Control	61.5 (14.4)	66.1 (16.7)	64 (14.5)	0.01; 0.70	0.40; 0.35		
DCL (%)						0	
VR	68.7 (8.3)	71.6 (7.9)	69.9 (8.6)	0.09; 0.37	0.20; 0.23	0.56	0.04
Control	62.9 (12.9)	67.7 (10.6)	69.3 (13.2)	0.08; 0.58	0.03; 0.70		
BBS (points)							
VR	46.6 (3.9)	52.4 (2.1)	52 (2.7)	<0.001; 1.87	< 0.001; 1.73	0.32	0.10
Control	45.5 (7.2)	49.9 (5.5)	49 (5.7)	< 0.001; 0.93	0.01; 0.91		
TUG (s)	10 ((0 0 1)			0.001 1.50	0.001 1.00	0.40	0.50
VR	10.6 (3.04)	8.5 (2.5)	8.7 (2.03)	<0.001; -1.58	0.001; -1.20	0.42	0.60
Control TUG ^{cognitive} (s)	12.1 (7.5)	10.9 (5.7)	10.7 (4.5)	0.031 ; -0.38	0.276; -0.29		
	127(47)	0.6.00	0.2 (2.2)	.0.001. 1.02	.0.001 . 1.00	0.01	0.01
VR	12.7 (4.7)	9.6 (2.6)	9.2 (2.2)	< 0.001; -1.23	<0.001; -1.08	0.01	0.01
Control	15.03 (9.4)	13.8 (9.8)	12.7 (5.3)	0.03 ; -0.53	0.06; -0.38		
DTC on TUG	10 < (10 0)	-7.4 (9.4)	59(02)	0.02.0.02	0.007.071	0.01	0.01
VR	-18.6 (18.9)		-5.8 (9.2)	0.02 ; 0.62	0.007 ; 0.71	0.01	0.01
Control	-26.2 (20.2)	-24.2 (28.3)	-21.4 (19.6)	0.40; 0.28	0.3; 0.18		
10MW (m/s)	0.0(0.2)	11(0.2)	11(02)	.0.001. 1.07	0.005.075	0.20	0.07
VR	0.9 (0.2)	1.1 (0.2)	1.1 (0.2)	< 0.001; 1.07	0.005; 0.75	0.28	0.87
Control	0.9 (0.3)	0.9 (0.3)	0.9 (0.3)	0.03 ; 0.50	0.04 ; 0.47		
10MW ^{cognitive} (m/s)	07(027)	0.9 (0.3)	0.0(0.2)	-0.001.1.1	0.001.0.0	0.007	0.02
VR	0.7 (0.27)		0.9(0.2)	< 0.001; 1.1	0.001; 0.9	0.006	0.03
Control	0.8 (0.32)	0.8 (0.33)	0.8 (0.3)	0.21; 0.29	0.16; 0.29		
DTC on 10mw	22.9 (22.1)	12 4 (14 2)	10.5(10.7)	0.026. 0.56	0.005. 0.72	0.05	0.06
VR	22.8 (22.1)	13.4 (14.2)	10.5 (10.7)	0.026 ; -0.56	0.005 ; -0.73	0.05	0.06
Control	11.9 (23.4)	18.9 (20.9)	15.7 (17.8)	0.23; 0.28	0.42; 0.18		
MSWS-12 (points)	126(10.4)	21.4(10.0)	36.7 (11.8)	< 0.001; -1.37	0.001.004	0.79	0.70
VR	43.6 (10.4)	31.4 (10.9)			0.001; -0.94	0.79	0.70
Control FES-I (points)	41.3 (10.8)	30.5 (11.2)	35.5 (12.3)	< 0.001; -1.40	0.003; -0.75		
VR	42.3 (10.9)	31.3 (8.5)	32.1 (10.4)	< 0.001; -1.52	< 0.001; -1.25	0.05	0.06
v K Control	40.9 (8.4)	35 (9.9)	35.7 (9.5)	0.001; -1.32	<0.001; -1.23 <0.001; -1.13	0.05	0.00
ABC (points)	40.2 (0.4)	55 (7.7)	55.7 (9.5)	0.001, -0.09	\1 , -1.13		
VR	52 6 (21.0)	74 (15.6)	69.1 (20.1)	< 0.001; 1.58	< 0.001; 1.06	0.23	0.24
v k Control	52.6 (21.9) 46.1 (19.8)	63.9 (17.2)	59.1 (20.1) 59.1 (17.8)	< 0.001; 1.58 < 0.001; 1.19	< 0.001; 1.06 < 0.001; 1.02	0.25	0.24
		eT: reaction time; MV					CT.

Table 4. Intention-to-treat analysis of within-group and between-group changes (n=39)

VR: Virtual reality; SD:Standard deviation; ReT: reaction time; MVL: movement velocity; EPE: end point excursions; MXE: maximum excursions; DCL: directional control; BBS: berg balance scale; TUG: timed up and go; DTC: dual-task cost; 10MW: 10 meters walk; MSWS-12: multiple sclerosis walking scale 12; FES-I: fall efficacy scale-international; ABC: activities-specific balance confidence scale

* *P*-value from univariable analysis † *P*-value from multivariable analysis (mixed-model)

Time	Three months before the	Post intervention	Mean (SD)	<i>P</i> -value for change	e [*] ; Effect size	<i>P</i> -value for difference [†]	
Group	intervention Mean (SD) Median (min,max)	Mean (SD) Median (min,max)		Post intervention	Follow-up	Post intervention	Follow-up
VR	6.2 (6.9) 5 (0, 30)	2.2 (4.1) 0 (0, 15)	1.9 (3.8) 0 (0, 15)	0.004; - 0.99	0.002; -1.17	0.21	0.04
Control	3.2 (4.1) 1 (0, 14)	1.9 (3.2) 1 (0, 14)	1.9 (3.5) 0 (0, 14)	0.01; -0.51	0.06; -0.43	0.21	

Table 5. Within-group and between-group changes in number of falls (n=39)

VR: virtual reality; SD: standard deviation; min: minimum; max: maximum.

**P*-value from univariable analysis

[†]*P*-value from multivariable analysis (mixed-model)

ournal prever

CONSORT 2010 Flow Diagram

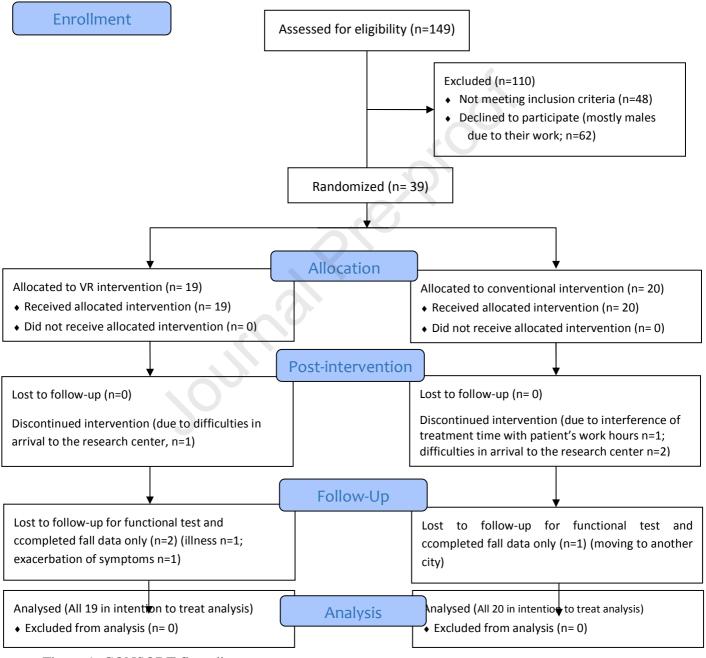


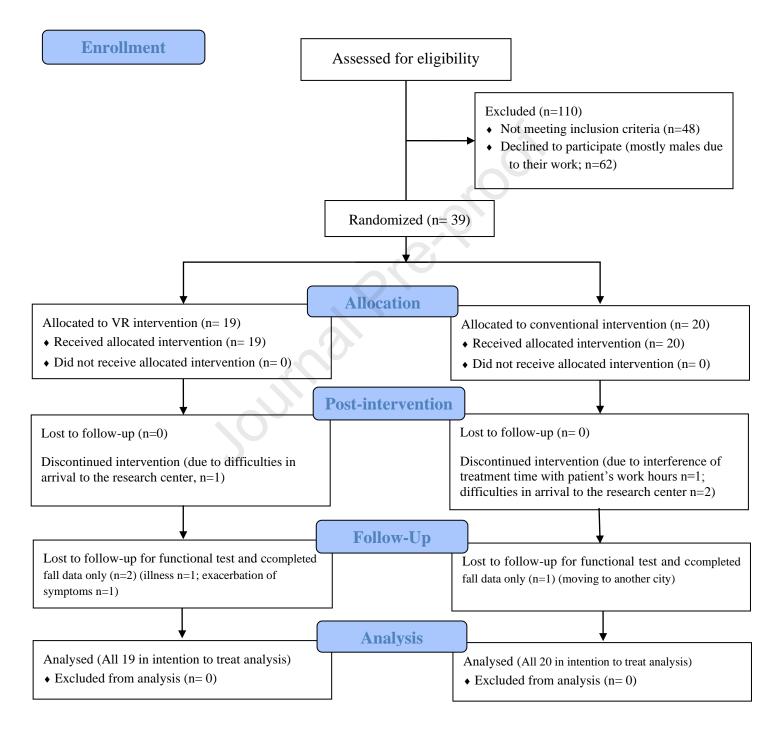
Figure 1: CONSORT flow diagram

Time Group	Three months before the intervention (n, %)	Post intervention (n, %)	Follow-up (n, %)	<i>P</i> -value; OR (95% CI) for change [*]		<i>P</i> -value; OR (95% CI) for difference [†]	
				Post intervention	Follow-up	Post intervention	Follow-up
VR	15 (78.9)	10 (52.6)	8 (42.1)	0.03 ; 5.94 (0.98, 35.84)	0.002 ; 11.18 (1.79, 69.98)	0.17; 10.11 (0.35, 293.55)	0.37; 3.79 (0.20, 73.57)
Control	12 (60.0)	11 (55.0)	8 (40.0)	0.56; 1.44 (0.26, 7.97)	0.04 ; 4.29 (0.73, 25.17)		

Table 6. Within-group and between-group changes in number of fallers (n=39)

VR: Virtual Reality; OR: odds ratio; CI: Confidence Interval

* *P*-value from univariable analysis


[†]*P*-value from multivariable analysis (mixed-model)

	22.42					
	Session 1					
Week 1: Simple on ground	Session 2					
	Session 3					
	Session 4					—
Week 2: Moderate on ground	Session 5	5		Body s	tability	
	Session 6	cre		Without	With	
	Session 7	asi		manipulation	manipulation	
Week 3: Simple on Foam	Session 8	R	Closed predictable envir	ronment		-
	Session 9	di	Without internal variability			Т
	Session 10	fict	With internal variability			+
Week 4: Moderate on Foam	Session 11	L.				1
	Session 12	Increasing difficulty level	Open unpredictable env	Ironment		-
	Session 13	vel	Without internal variability			1
Week 5: Difficult on ground	Session 14		With internal variability			
	Session 15					
	Session 16					
Week 6: Difficult on Foam	Session 17	•				
	Session 18					

	Body s	tability	Body transport		
	Without manipulation	With manipulation	Without manipulation	With manipulation	
Closed predictable envi	ronment				
Without internal variability					
With internal variability					
Open unpredictable env	rironment				
Without internal variability		-			
With internal variability					

CONSORT 2010 Flow Diagram

1 Details of the Virtual reality-based exercises:

- 2

3

- Virtual reality (VR) is an open environment in which objects around the individual are in
 motion; or the support surface could be unstable during exercise. In open environments,
 individuals need to anticipate the speed and the direction of moving objects, and predict time and
 pattern of postural adjustments¹.
- 8

9 Participants were instructed to stand in front of a screen, where the device sensor scans their body position in real time and displays it as a virtual avatar. This avatar simulates the 10 11 person's movements instantaneously on the screen. In the next step, participants got familiarized 12 with the system and the information was given about the purpose of each exercise and how it should be performed. Three exergames, each in three difficulty levels, were considered to be 13 performed on both ground and foam surfaces. At each session, following 5 minutes of warm-up 14 (including 4 minutes of side stepping and 1 minute of half squatting, both with real-time VR 15 feedback), the participants performed each category of the exercises for 10 minutes. In the first 16 17 exergame, participants were asked to turn off randomly turned on virtual lights; by stepping 18 forward, backward, to the right, or the left. In the second exercise, the participants needed to 19 collect boxes released from the top and put them in certain places using a virtual stick. In the third exercise, the participants stocked in a virtual empty aquarium, asked to prevent the leakage 20 inside from random breaking parts on the aquarium walls and floor, by shifting weight, reaching 21 and stepping. 22

1	
Т	

2		According to motor learning principals, the rapid shifting from blocked practice to
3	rando	om or random-blocked practice is necessary when progressing treatment programs 1,2 .
4	Rand	lom-block practices allow individuals to correct their errors before jumping to the next level,
5	resul	ting in faster learning compared to the random exercises; and higher retention compared to
6	block	ked exercises $^{1-3}$. Hence, all exercises in this study considered to be random-blocked.
7		
8	Refe	rences:
9	1.	Kisner C, Colby LA. Therapeutic Exercise: Foundations and Techniques. 6th ed. F.A.
10		Davis, 2012; 2012.
11	2.	Carr J, Shepherd R. Movement Science: Foundations for Physical Therapy in
12		Rehabilitation. 2nd ed. Aspen Publishers; 2000.
13		https://books.google.com/books?id=SgFtAAAAMAAJ.
14	3.	Baran M, Lehrer N, Duff M, et al. Interdisciplinary Concepts for Design and
15		Implementation of Mixed Reality Interactive Neurorehabilitation Systems for Stroke. Phys
16		Ther. 2015;95(3):449-460.
17		
18		
19		